Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Nov 01 2018 18:21:03
%S 0,0,1,0,1,1,0,1,1,2,0,1,1,3,1,0,1,1,5,1,3,0,1,1,9,1,6,1,0,1,1,17,1,
%T 14,1,3,0,1,1,33,1,36,1,7,2,0,1,1,65,1,98,1,21,4,3,0,1,1,129,1,276,1,
%U 73,10,8,1,0,1,1,257,1,794,1,273,28,30,1,5
%N Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = sigma_k(n) - n^k.
%C A(n,k) is the sum of k-th powers of proper divisors of n.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ProperDivisor.html">Proper divisors</a>
%H <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>
%F G.f. of column k: Sum_{j>=1} j^k*x^(2*j)/(1 - x^j).
%F Dirichlet g.f. of column k: zeta(s-k)*(zeta(s) - 1).
%F A(n,k) = 1 if n is prime.
%e Square array begins:
%e 0, 0, 0, 0, 0, 0, ...
%e 1, 1, 1, 1, 1, 1, ...
%e 1, 1, 1, 1, 1, 1, ...
%e 2, 3, 5, 9, 17, 33, ...
%e 1, 1, 1, 1, 1, 1, ...
%e 3, 6, 14, 36, 98, 276, ...
%t Table[Function[k, DivisorSigma[k, n] - n^k][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
%t Table[Function[k, SeriesCoefficient[Sum[j^k x^(2 j)/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
%Y Columns k=0..5 give A032741, A001065, A067558, A276634, A279363, A279364.
%Y Cf. A109974, A285425, A286880, A321259 (diagonal).
%K nonn,tabl
%O 1,10
%A _Ilya Gutkovskiy_, Nov 01 2018