[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lexicographical ordering of pure imaginary integers in the base (-1+i) numeral system.
2

%I #29 Jan 31 2019 08:22:45

%S 0,1,-2,-1,-4,-3,-6,-5,8,9,6,7,4,5,2,3,16,17,14,15,12,13,10,11,24,25,

%T 22,23,20,21,18,19,-32,-31,-34,-33,-36,-35,-38,-37,-24,-23,-26,-25,

%U -28,-27,-30,-29,-16,-15,-18,-17,-20,-19,-22,-21,-8,-7,-10,-9,-12,-11,-14,-13,-64,-63,-66,-65,-68,-67,-70,-69

%N Lexicographical ordering of pure imaginary integers in the base (-1+i) numeral system.

%C For ordering of pure real integers in same system see A073791.

%C All integers appear in this sequence.

%H Andrey Zabolotskiy, <a href="/A320283/b320283.txt">Table of n, a(n) for n = 0..8191</a> (terms up to 255 from Andreas K. Badea)

%H Solomon I. Khmelnik, <a href="http://lib.izdatelstwo.com/Papers2/s4.djvu">Specialized Digital Computer for Operations with Complex Numbers</a>, Questions of Radio Electronics, 12 (1964), 60-82 [in Russian].

%H W. J. Penney, <a href="https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/tech-journals/a-binary-system.pdf">A "binary" system for complex numbers</a>, NSA Technical Journal, Vol. X, No. 2 (1965), 13-15.

%H W. J. Penney, <a href="https://doi.org/10.1145/321264.321274">A "binary" system for complex numbers</a>, JACM 12 (1965), 247-248.

%F From _Andrey Zabolotskiy_, Jan 31 2019: (Start)

%F a(n) = A073791(2*n)/2.

%F a(n) = -a(4*n)/4.

%F a(n) = -4*a(floor(n/4)) + a(n mod 4). (End)

%Y Cf. A066321, A256441, A073791.

%K sign,easy

%O 0,3

%A _Andreas K. Badea_, Oct 09 2018