[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320280
Triangle T(n, k) = Sum_{i=1..n} Stirling2(n,i) * abs(Stirling1(i-1,k-1)), n >= 1, 1 <= k <= n.
1
1, 1, 1, 1, 4, 1, 1, 15, 9, 1, 1, 66, 66, 16, 1, 1, 365, 500, 190, 25, 1, 1, 2528, 4215, 2150, 435, 36, 1, 1, 21259, 40355, 25235, 6825, 861, 49, 1, 1, 210430, 438256, 317632, 105910, 17836, 1540, 64, 1, 1, 2393769, 5352534, 4338264, 1693734, 352926, 40656, 2556, 81, 1
OFFSET
1,5
COMMENTS
T(n,k) is the number of blades of dimension (n-k) in the canonical basis of graduated blades (see Early link).
LINKS
EXAMPLE
Triangle begins:
1,
1, 1,
1, 4, 1,
1, 15, 9, 1,
1, 66, 66, 16, 1,
1, 365, 500, 190, 25, 1,
...
MATHEMATICA
T[n_, k_]:= Sum[StirlingS2[n, j]*Abs[StirlingS1[j-1, k-1]], {j, 1, n}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}]//Flatten (* G. C. Greubel, Oct 14 2018 *)
PROG
(PARI) T(n, k) = sum(i=1, n, stirling(n, i, 2)*abs(stirling(i-1, k-1, 1)));
tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print);
(Magma) [[(&+[StirlingSecond(n, i)*Abs(StirlingFirst(i-1, k-1)): i in [1..n]]): k in [1..n]]: n in [1..10]]; // G. C. Greubel, Oct 14 2018
CROSSREFS
Cf. A008275 (Stirling1), A008277 (Stirling2).
Sequence in context: A141724 A208956 A271705 * A343804 A157211 A176428
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Oct 09 2018
STATUS
approved