OFFSET
1,3
COMMENTS
An unlabeled rooted tree is semi-binary if all out-degrees are <= 2. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190.
FORMULA
a(1) = 1,
a(2) = 1,
a(3) = 2,
a(n even) = a(n-1) + a(n-2),
a(n odd) = a(n-1) + a(n-2) + a((n-1)/2).
EXAMPLE
The a(1) = 1 through a(7) = 17 semi-binary rooted trees:
o (o) (oo) ((oo)) (o(oo)) ((o(oo))) ((oo)(oo))
((o)) (o(o)) (((oo))) (o((oo))) (o(o(oo)))
(((o))) ((o)(o)) (o(o(o))) (((o(oo))))
((o(o))) ((((oo)))) ((o((oo))))
(o((o))) (((o)(o))) ((o(o(o))))
((((o)))) (((o(o)))) (o(((oo))))
((o((o)))) (o((o)(o)))
(o(((o)))) (o((o(o))))
(((((o))))) (o(o((o))))
(((((oo)))))
((((o)(o))))
((((o(o)))))
(((o))((o)))
(((o((o)))))
((o(((o)))))
(o((((o)))))
((((((o))))))
MATHEMATICA
crb[n_]:=Switch[n, 1, 1, 2, 1, 3, 2, _?EvenQ, crb[n-1]+crb[n-2], _?OddQ, crb[n-1]+crb[n-2]+crb[(n-1)/2]]
Array[crb, 20]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 08 2018
STATUS
approved