[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329944
Number of permutations of [n] whose cycle lengths avoid primes.
4
1, 1, 1, 1, 7, 31, 211, 1051, 10081, 107857, 1227241, 8969401, 108817831, 1173362191, 19426473067, 320062090531, 5692838161921, 70426164947041, 1346222143950481, 21952313047471537, 493701484264143751, 10971915198235355071, 266542798822750395331
OFFSET
0,5
LINKS
FORMULA
a(n) mod 2 = 1.
a(n) mod 10 = period 5: repeat [1,1,1,1,7], g.f.: (7*x^4+x^3+x^2+x+1)/(1-x^5).
EXAMPLE
a(4) = 7: (1)(2)(3)(4), (1234), (1243), (1324), (1342), (1423), (1432).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(isprime(j), 0,
a(n-j)*binomial(n-1, j-1)*(j-1)!), j=1..n))
end:
seq(a(n), n=0..25);
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[If[PrimeQ[j], 0,
a[n-j] Binomial[n-1, j-1] (j-1)!], {j, 1, n}]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 31 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 24 2019
STATUS
approved