[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329445
Dirichlet inverse of A328745.
1
1, -2, -3, 1, -5, 6, -7, 0, 3, 10, -11, -3, -13, 14, 15, 0, -17, -6, -19, -5, 21, 22, -23, 0, 10, 26, -1, -7, -29, -30, -31, 0, 33, 34, 35, 3, -37, 38, 39, 0, -41, -42, -43, -11, -15, 46, -47, 0, 21, -20, 51, -13, -53, 2, 55, 0, 57, 58, -59, 15, -61, 62, -21, 0, 65, -66, -67, -17
OFFSET
1,2
COMMENTS
Signed version of A182938.
FORMULA
Multiplicative with a(p^e) = (-1)^e*binomial(p,e) for prime p and e >= 0.
Dirichlet g.f.: Sum_{n>0} a(n)/n^s = Product_{p prime} (1-p^(-s))^p.
a(n) = A182938(n) * A008836(n) for n > 0.
PROG
(Python)
from math import prod, comb
from sympy import factorint
def A329445(n): return prod(-comb(p, e) if e&1 else comb(p, e) for p, e in factorint(n).items()) # Chai Wah Wu, Dec 23 2022
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Werner Schulte, Nov 13 2019
STATUS
approved