[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328988
Number of partitions of n with rank a multiple of 3.
7
1, 0, 1, 3, 1, 3, 7, 6, 10, 16, 16, 25, 37, 43, 58, 81, 95, 127, 168, 205, 264, 340, 413, 523, 660, 806, 1002, 1248, 1513, 1866, 2292, 2775, 3379, 4116, 4949, 5989, 7227, 8659, 10393, 12464, 14845, 17720, 21109, 25041, 29708, 35210, 41562, 49085, 57871, 68052
OFFSET
1,4
LINKS
Elaine Hou and Meena Jagadeesan, Dyson’s partition ranks and their multiplicative extensions, arXiv:1607.03846 [math.NT], 2016; The Ramanujan Journal 45.3 (2018): 817-839. See Table 2.
FORMULA
a(n) = A000041(n) - 2*A328989(n). - Alois P. Heinz, Nov 11 2019
From Seiichi Manyama, May 23 2023: (Start)
a(n) = (A000041(n) + 2*A053274(n))/3.
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1+x^(3*k)) / (1+x^k+x^(2*k)). (End)
MAPLE
b:= proc(n, i, r) option remember; `if`(n=0 or i=1,
`if`(irem(r+n, 3)=0, 1, 0), b(n, i-1, r)+
b(n-i, min(n-i, i), irem(r+1, 3)))
end:
a:= proc(n) option remember; add(
b(n-i, min(n-i, i), modp(1-i, 3)), i=1..n)
end:
seq(a(n), n=1..60); # Alois P. Heinz, Nov 11 2019
MATHEMATICA
b[n_, i_, r_] := b[n, i, r] = If[n == 0 || i == 1, If[Mod[r + n, 3] == 0, 1, 0], b[n, i - 1, r] + b[n - i, Min[n - i, i], Mod[r + 1, 3]]];
a[n_] := a[n] = Sum[b[n - i, Min[n - i, i], Mod[1 - i, 3]], {i, 1, n}];
Array[a, 60] (* Jean-François Alcover, Feb 29 2020, after Alois P. Heinz *)
PROG
(PARI) my(N=60, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1+x^(3*k))/(1+x^k+x^(2*k)))) \\ Seiichi Manyama, May 23 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 09 2019
EXTENSIONS
a(33)-a(50) from Lars Blomberg, Nov 11 2019
Typo in a(14) in both the arXiv preprint and the published version in the Ramanujan Journal corrected by Alois P. Heinz, Nov 11 2019
STATUS
approved