[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 + 4*x - 5*x^2 + 10*x^3) / ((1 - x) * (1 - 10*x^2)).
2

%I #10 Aug 25 2022 08:58:40

%S 1,5,10,60,110,610,1110,6110,11110,61110,111110,611110,1111110,

%T 6111110,11111110,61111110,111111110,611111110,1111111110,6111111110,

%U 11111111110,61111111110,111111111110,611111111110,1111111111110,6111111111110,11111111111110,61111111111110,111111111111110

%N Expansion of (1 + 4*x - 5*x^2 + 10*x^3) / ((1 - x) * (1 - 10*x^2)).

%C Number of odd palindromes <= 10^n.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,10,-10).

%F G.f.: (1 + 4*x - 5*x^2 + 10*x^3) / ((1 - x) * (1 - 10*x^2)).

%F a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3). - _Wesley Ivan Hurt_, Aug 25 2022

%t nmax = 28; CoefficientList[Series[(1 + 4 x - 5 x^2 + 10 x^3) / ((1 - x) (1 - 10 x^2)), {x, 0, nmax}], x]

%t Join[{1}, LinearRecurrence[{1, 10, -10}, {5, 10, 60}, 28]]

%o (PARI) Vec((1 + 4*x - 5*x^2 + 10*x^3) / ((1 - x) * (1 - 10*x^2)) + O(x^30)) \\ _Michel Marcus_, Oct 13 2019

%Y Cf. A002113, A029950, A050250, A070199, A328333.

%K nonn,base,easy

%O 0,2

%A _Ilya Gutkovskiy_, Oct 12 2019