Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 05 2019 18:21:09
%S 0,4,30,100,398,1748,6510,28628,102590,456132,1642078,7289764,
%T 26336590,116802708,420215854,1865678868,6741198206,29904470916,
%U 107568473246,477629808612,1725756768270,7655529847380,27537572248046,122273029571156,441793665700414,1959816793456452,7049616389341662,31301899019407908,113099196716630990,501713069953322004
%N Bitwise XOR of trajectories of rule 30 and rule 124, when both are started from a lone 1 cell: a(n) = A110240(n) XOR A267357(n).
%H Antti Karttunen, <a href="/A328103/b328103.txt">Table of n, a(n) for n = 0..1023</a>
%H Antti Karttunen, <a href="/A328103/a328103.png">Terms up to a(255) drawn as binary strings, with 1 bit = 3x3 pixels resolution</a>
%H Antti Karttunen, <a href="/A328103/a328103_1.png">Terms up to a(1023) drawn as binary strings, with 1 bit = 1 pixel resolution</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F a(n) = A110240(n) XOR A267357(n), where XOR is bitwise exclusive or (A003987).
%o (PARI)
%o A269160(n) = bitxor(n, bitor(2*n, 4*n));
%o A110240(n) = if(!n,1,A269160(A110240(n-1)));
%o A269174(n) = bitand(bitor(n,n<<1),bitor(bitxor(n,n<<1),bitxor(n,n<<2)));
%o A267357(n) = if(!n,1,A269174(A267357(n-1)));
%o A328103(n) = bitxor(A110240(n),A267357(n));
%o \\ Use this one for writing b-files:
%o A328103write(up_to) = { my(s1=1, s2=1); for(n=0,up_to, write("b328103.txt", n, " ", bitxor(s1, s2)); s1 = A269160(s1); s2 = A269174(s2)); };
%o (Python)
%o def A269160(n): return(n^((n<<1)|(n<<2)))
%o def A269174(n): return((n|(n<<1))&((n^(n<<1))|(n^(n<<2))))
%o def genA328103():
%o '''Yield successive terms of A328103.'''
%o s1 = 1
%o s2 = 1
%o while True:
%o yield (s1^s2)
%o s1 = A269174(s1)
%o s2 = A269160(s2)
%Y Cf. A003987, A110240, A267357, A269160, A269174, A328109 (binary weight of terms).
%Y Cf. also A327971, A327972, A327973, A327976, A328104 for other such combinations, and also A328111.
%K nonn
%O 0,2
%A _Antti Karttunen_, Oct 05 2019