OFFSET
1,1
COMMENTS
Primes of the form x^2+1 such that 2*x^2=y^2+z^2 where y^2+1 and z^2+1 are primes.
Some terms of the sequence are the average of more than one pair of terms of A002496. E.g., 2890001 = (115601 + 5664401)/2 = (2016401 + 3763601)/2, while 5354597 = (42437 + 10666757)/2 = (1136357 + 9572837)/2 = (1552517 + 9156677)/2.
Primes of the form u^2*(s^2 + t^2)^2 + 1 where u^2*(s^2 + 2*s*t - t^2)^2 + 1 and u^2*(-s^2 + 2*s*t + t^2)^2 + 1 are prime, (sqrt(2) - 1)*s < t < s. The generalized Bunyakovsky conjecture implies there are infinitely many terms for each such pair (s,t).
LINKS
Robert Israel, Table of n, a(n) for n = 1..1055
EXAMPLE
a(3)=24337 is in the sequence because 24337=(7057+41617)/2 with 7057, 24337 and 41617 all terms of A002496, i.e., they are primes and 7057=84^2+1, 24337=156^2+1 and 41617=204^2+1.
MAPLE
N:= 10^8: # to get terms <= N
P:= select(isprime, [seq(x^2+1, x=2..floor(sqrt(N-1)), 2)]):
nP:= nops(P):
R:= NULL:
for i from 1 to nP do
x:= P[i];
for j from 1 to i-1 do
z:= 2*x-P[j];
if issqr(z-1) and isprime(z) then R:= R, x; break fi
od
od:
R;
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Sep 23 2019
STATUS
approved