OFFSET
0,4
COMMENTS
An antichain is a set of sets, none of which is a subset of any other.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.
EXAMPLE
Triangle begins:
1
1 1
3 1
6 2 1
15 7 5 2
52 53 62 31 9 1 1
The antichains counted in row n = 4 are the following:
0 {1234} {12}{134}{234} {123}{124}{134}{234}
{1} {12}{134} {123}{124}{134} {12}{13}{14}{23}{24}{34}
{12} {123}{124} {12}{13}{24}{34}
{123} {12}{13}{14} {12}{13}{14}{234}
{1}{2} {12}{13}{24} {12}{13}{14}{23}{24}
{1}{23} {12}{13}{234}
{12}{13} {12}{13}{14}{23}
{1}{234}
{12}{34}
{1}{2}{3}
{1}{2}{34}
{2}{13}{14}
{12}{13}{23}
{1}{2}{3}{4}
{4}{12}{13}{23}
KEYWORD
nonn,tabf,more
AUTHOR
Gus Wiseman, Sep 11 2019
STATUS
approved