[go: up one dir, main page]

login
A327286
Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size three are used and the colors are introduced in increasing order.
2
1, 2, 5, 10, 21, 37, 67, 112, 187, 302, 479, 741, 1136, 1707, 2539, 3732, 5424, 7804, 11133, 15743, 22088, 30774, 42582, 58540, 80007, 108725, 146955, 197646, 264525, 352433, 467541, 617651, 812734, 1065417, 1391592, 1811296, 2349775, 3038515, 3917052, 5034647
OFFSET
6,2
LINKS
FORMULA
a(n) ~ exp(sqrt(2*(Pi^2 - 6*polylog(2,-2))*n/3)) * sqrt(Pi^2 - 6*polylog(2,-2)) / (72*Pi*n). - Vaclav Kotesovec, Sep 18 2019
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(3):
seq(a(n), n=6..47);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
a[n_] := With[{k = 3}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]/ k!];
a /@ Range[6, 47] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A321878.
Sequence in context: A262408 A344378 A032468 * A215925 A359209 A182807
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 28 2019
STATUS
approved