[go: up one dir, main page]

login
A327285
Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size two are used and the colors are introduced in increasing order.
2
1, 2, 5, 9, 17, 28, 47, 74, 116, 175, 263, 385, 560, 800, 1135, 1589, 2210, 3041, 4160, 5642, 7609, 10189, 13575, 17976, 23694, 31066, 40559, 52708, 68230, 87957, 112985, 144594, 184437, 234466, 297159, 375453, 473039, 594298, 744681, 930674, 1160271, 1442989
OFFSET
3,2
LINKS
FORMULA
a(n) ~ exp(Pi*sqrt(n)) / (16*n). - Vaclav Kotesovec, Sep 18 2019
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(2):
seq(a(n), n=3..44);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
a[n_] := With[{k = 2}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]/ k!];
a /@ Range[3, 44] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A321878.
Sequence in context: A366738 A068006 A000097 * A081996 A034329 A230441
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 28 2019
STATUS
approved