Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Dec 09 2020 09:01:07
%S 0,1,4,19,98,570,3642,25292,189454,1519648,12978141,117437020,
%T 1121299471,11256640012,118443403699,1302670531063,14938986954323,
%U 178248001223476,2208487163394749,28363722744050886,376991516806826090,5178009641895235269,73396161423153313320
%N Total number of colors used in all colored integer partitions of n using all colors of an initial interval of the color palette such that all parts have different color patterns and a pattern for part i has i distinct colors in increasing order.
%H Alois P. Heinz, <a href="/A327115/b327115.txt">Table of n, a(n) for n = 0..300</a>
%F a(n) = Sum_{k=1..n} A326914(n,k) = Sum_{k=1..n} A326962(n,k).
%e a(2) = 4: 2ab, 1a1b. Both colors (a and b) are used twice: 2 + 2 = 4.
%p C:= binomial:
%p g:= proc(n) option remember; n*2^(n-1) end:
%p h:= proc(n) option remember; local k; for k from
%p `if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od
%p end:
%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<h(n),
%p 0, add(b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i), j), j=0..n/i)))
%p end:
%p a:= n-> add(k*add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k), k=h(n)..n):
%p seq(a(n), n=0..23);
%t c = Binomial;
%t g[n_] := g[n] = n 2^(n - 1);
%t h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0, h[n - 1]] , True, k++, If [g[k] >= n , Return[k]]]];
%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1 || k < h[n], 0, Sum[b[n - i j, Min[n - i j, i - 1], k] c[c[k, i], j], {j, 0, n/i}]]];
%t a[n_] := Sum[k Sum[b[n, n, i] (-1)^(k-i) c[k, i], {i, 0, k}], {k, h[n], n}];
%t a /@ Range[0, 23] (* _Jean-François Alcover_, Dec 09 2020, after _Alois P. Heinz_ *)
%Y Cf. A326914, A326962.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Sep 13 2019