[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327115
Total number of colors used in all colored integer partitions of n using all colors of an initial interval of the color palette such that all parts have different color patterns and a pattern for part i has i distinct colors in increasing order.
3
0, 1, 4, 19, 98, 570, 3642, 25292, 189454, 1519648, 12978141, 117437020, 1121299471, 11256640012, 118443403699, 1302670531063, 14938986954323, 178248001223476, 2208487163394749, 28363722744050886, 376991516806826090, 5178009641895235269, 73396161423153313320
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} A326914(n,k) = Sum_{k=1..n} A326962(n,k).
EXAMPLE
a(2) = 4: 2ab, 1a1b. Both colors (a and b) are used twice: 2 + 2 = 4.
MAPLE
C:= binomial:
g:= proc(n) option remember; n*2^(n-1) end:
h:= proc(n) option remember; local k; for k from
`if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<h(n),
0, add(b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i), j), j=0..n/i)))
end:
a:= n-> add(k*add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k), k=h(n)..n):
seq(a(n), n=0..23);
MATHEMATICA
c = Binomial;
g[n_] := g[n] = n 2^(n - 1);
h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0, h[n - 1]] , True, k++, If [g[k] >= n , Return[k]]]];
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1 || k < h[n], 0, Sum[b[n - i j, Min[n - i j, i - 1], k] c[c[k, i], j], {j, 0, n/i}]]];
a[n_] := Sum[k Sum[b[n, n, i] (-1)^(k-i) c[k, i], {i, 0, k}], {k, h[n], n}];
a /@ Range[0, 23] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A006194 A047099 A211855 * A370024 A306511 A177249
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 13 2019
STATUS
approved