[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326431
E.g.f.: exp(-2) * Sum_{n>=0} ((1+x)^n + 1)^n / n!.
2
1, 3, 26, 393, 8806, 268011, 10496566, 509611213, 29841622422, 2063796756103, 165781539363706, 15259755609383885, 1591551797382262450, 186311156677551137459, 24281772775240615369662, 3498626608233846654660989, 553893001173840022047130286, 95833008154703833096894957199, 18033356856862268626280345672162
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) exp(-r*(p+1)) * Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) exp(-r*(p+1)) * Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n / n!,
here, q = 1+x, p = 1, r = 1.
LINKS
FORMULA
E.g.f.: exp(-2) * Sum_{n>=0} ((1+x)^n + 1)^n / n!.
E.g.f.: exp(-2) * Sum_{n>=0} (1+x)^(n^2) * exp( (1+x)^n ) / n!.
EXAMPLE
E.g.f.: A(x) = 1 + 3*x + 26*x^2/2! + 393*x^3/3! + 8806*x^4/4! + 268011*x^5/5! + 10496566*x^6/6! + 509611213*x^7/7! + 29841622422*x^8/8! + 2063796756103*x^9/9! + 165781539363706*x^10/10! + ...
such that
A(x) = exp(-2) * (1 + ((1+x) + 1) + ((1+x)^2 + 1)^2/2! + ((1+x)^3 + 1)^3/3! + ((1+x)^4 + 1)^4/4! + ((1+x)^5 + 1)^5/5! + ((1+x)^6 + 1)^6/6! + ...)
also,
A(x) = exp(-2) * (exp(1) + (1+x)*exp(1+x) + (1+x)^4*exp((1+x)^2)/2! + (1+x)^9*exp((1+x)^3)/3! + (1+x)^16*exp((1+x)^4)/4! + (1+x)^25*exp((1+x)^5)/5! + (1+x)^36*exp((1+x)^6)/6! + ...).
PROG
(PARI) /* Requires appropriate precision */
\p200
{a(n) = my(A = exp(-2) * sum(m=0, n+300, ((1+x)^m + 1 +x*O(x^n))^m / m! )); round(n!*polcoeff(A, n))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A326432.
Sequence in context: A317654 A143155 A300283 * A206403 A192554 A306280
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 09 2019
STATUS
approved