[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326238
Expansion of Sum_{k>=1} k * x^k * (1 - x^k) / (1 + x^k)^3.
2
1, -2, 12, -20, 30, -24, 56, -104, 117, -60, 132, -240, 182, -112, 360, -464, 306, -234, 380, -600, 672, -264, 552, -1248, 775, -364, 1080, -1120, 870, -720, 992, -1952, 1584, -612, 1680, -2340, 1406, -760, 2184, -3120, 1722, -1344, 1892, -2640, 3510, -1104, 2256
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} (-1)^(k + 1) * k^2 * x^k / (1 - x^k)^2.
a(n) = n * Sum_{d|n} (-1)^(d + 1) * d.
a(n) = n * A002129(n).
Multiplicative with a(2^e) = 2^e*(3-2^(e+1)), and a(p^e) = p^e*(p^(e+1)-1)/(p-1) if p > 2. - Amiram Eldar, Dec 05 2022
Dirichlet g.f.: zeta(s-1)*zeta(s-2)*(1-2^(3-s)). - Amiram Eldar, Jan 07 2023
MATHEMATICA
nmax = 47; CoefficientList[Series[Sum[k x^k (1 - x^k)/(1 + x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[n Sum[(-1)^(d + 1) d, {d, Divisors[n]}], {n, 1, 47}]
f[p_, e_] := p^e*(p^(e+1)-1)/(p-1); f[2, e_] := 2^e*(3-2^(e+1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2022 *)
PROG
(PARI) a(n)={n*sumdiv(n, d, (-1)^(d + 1) * d)} \\ Andrew Howroyd, Sep 10 2019
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Sep 10 2019
STATUS
approved