OFFSET
1,2
COMMENTS
First differs from A325361 in lacking 150.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The enumeration of these partitions by sum is given by A325353.
LINKS
EXAMPLE
Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
12: {1,1,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
36: {1,1,2,2}
40: {1,1,1,3}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
52: {1,1,6}
56: {1,1,1,4}
60: {1,1,2,3}
63: {2,2,4}
66: {1,2,5}
68: {1,1,7}
72: {1,1,1,2,2}
76: {1,1,8}
78: {1,2,6}
80: {1,1,1,1,3}
MATHEMATICA
primeptn[n_]:=If[n==1, {}, Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]];
Select[Range[100], And@@Table[GreaterEqual@@Differences[primeptn[#], k], {k, 0, PrimeOmega[#]}]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 02 2019
STATUS
approved