[go: up one dir, main page]

login
A324797
Irregular triangle read by rows: row n gives denominators of fractions in the Farey subsequence B(m).
2
1, 2, 1, 1, 3, 2, 3, 1, 1, 4, 3, 5, 2, 5, 3, 4, 1, 1, 5, 4, 3, 5, 7, 2, 7, 5, 3, 4, 5, 1, 1, 6, 5, 4, 7, 3, 8, 5, 7, 9, 2, 9, 7, 5, 8, 3, 7, 4, 5, 6, 1, 1, 7, 6, 5, 4, 7, 3, 8, 5, 7, 9, 11, 2, 11, 9, 7, 5, 8, 3, 7, 4, 5, 6, 7, 1, 1, 8, 7, 6, 5, 9, 4, 7, 10, 3, 11, 8, 5, 12, 7, 9, 11, 13, 2, 13, 11, 9, 7, 12, 5, 8, 11, 3, 10, 7, 4, 9, 5, 6, 7, 8, 1
OFFSET
1,2
COMMENTS
B(n) is denoted by F(B(2n),n) in Matveev (2017) - see definition on page 1. B(n) consists of the terms h/k of the Farey series F_{2n} such that k-n <= h <= n.
A049691 gives the row lengths.
REFERENCES
A. O. Matveev, Farey Sequences, De Gruyter, 2017.
EXAMPLE
The first few sequences B(1), B(2), B(3), B(4) are:
[0, 1/2, 1],
[0, 1/3, 1/2, 2/3, 1],
[0, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1],
[0, 1/5, 1/4, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 3/4, 4/5, 1], [0, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 4/9, 1/2, 5/9, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 1],
...
MAPLE
Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
B := proc(m) local a, i, h, k; global Farey; a:=[];
for i in Farey(2*m) do
h:=numer(i); k:=denom(i);
if (h <= m) and (k-m <= h) then a:=[op(a), i]; fi; od: a; end;
CROSSREFS
Cf. A006842/A006843, A049691, A324796 (numerators).
Sequence in context: A153901 A132844 A006843 * A049456 A117506 A179205
KEYWORD
nonn,frac,tabf
AUTHOR
N. J. A. Sloane, Sep 10 2019
STATUS
approved