[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324311
Expansion of the unique formal power series R(t) with constant term 0 satisfying t = Sum_{n>=0} (1/(n+1))*binomial(2n,n)^2/*R(t)^(n+1).
3
1, -2, -4, -20, -132, -1008, -8432, -75096, -700180, -6761040, -67116048, -681341440, -7045987312, -74007446400, -787712891328, -8480626018544, -92218188224340, -1011605255827920, -11183503253443920, -124495464358157760, -1394538057040652656, -15708893392461609600
OFFSET
1,2
LINKS
Mireille Bousquet-Mélou, Andrew Elvey Price, Andrew Price, The generating function of planar Eulerian orientations, arXiv:1803.08265 [math.CO], 2018.
Mireille Bousquet-Mélou, Andrew Elvey Price, Paul Zinn-Justin, Eulerian orientations and the six-vertex model on planar map, arXiv:1902.07369 [math.CO], 2019. See Theorem 1.
MATHEMATICA
m = 22;
aa = Array[a, m]; R[t_] = aa.t^Range[m]; eq = Thread[CoefficientList[t-Sum[ 1/(n+1) Binomial[2n, n]^2 R[t]^(n+1), {n, 0, m}] + O[t]^(m+1), t] == 0];
aa /. Solve[eq, aa][[1]] (* Jean-François Alcover, Feb 25 2019 *)
PROG
(PARI) lista(nn) = {my(v = vector(nn), R, P, c, r, s); kill(y); for (n=1, nn, v[n] = y; R = sum(k=1, n, v[k]*t^k); P = sum(k=0, n, binomial(2*k, k)^2/(k+1)*R^(k+1)); c = polcoef(P, n, t); r = polcoef(c, 0, y); s = polcoef(c, 1, y); if (n==1, v[n] = (1-r)/s, v[n] = -r/s); ); R = sum(k=1, #v, v[k]*t^k); vector(nn, k, polcoef(R, k, t)); }
CROSSREFS
KEYWORD
sign
AUTHOR
Michel Marcus, Feb 21 2019
STATUS
approved