OFFSET
1,3
COMMENTS
For additional properties of the incomplete Lucas numbers and special cases not listed here, see Filipponi (1996, pp. 45-53).
LINKS
A. Dil and I. Mezo, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comp. 206 (2008), 942-951; in Eqs. (11), see the incomplete Lucas numbers.
Piero Filipponi, Incomplete Fibonacci and Lucas numbers, P. Rend. Circ. Mat. Palermo (Serie II) 45(1) (1996), 37-56; see Table 2 (p. 46) that contains the incomplete Lucas numbers.
A. Pintér and H.M. Srivastava, Generating functions of the incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo (Serie II) 48(3) (1999), 591-596.
FORMULA
L(n,k) = F(n-1, k-1) + F(n+1, k) for n >= 1 and 0 <= k <= floor(n/2), where F(n,k) = Sum_{j = 0..k} binomial(n-1-j, j) are the incomplete Fibonacci numbers (defined for n >= 1 and 0 <= k <= floor((n-1)/2)).
L(n+2, k+1) = L(n+1, k+1) + L(n,k) for n >= 1 and 0 <= k <= floor((n-1)/2).
L(n,k) = F(n+2,k) - F(n-2, k-2) for n >= 3 and 2 <= k <= floor((n+1)/2).
EXAMPLE
Triangle L(n,k) (with rows n >= 1 and columns k >= 0) begins as follows:
1;
1, 3;
1, 4;
1, 5, 7;
1, 6, 11;
1, 7, 16, 18;
1, 8, 22, 29;
1, 9, 29, 45, 47;
1, 10, 37, 67, 76;
1, 11, 46, 96, 121, 123;
1, 12, 56, 133, 188, 199;
...
Row sums are 1, 4, 5, 13, 18, 42, 60, 131, 191, 398, 589, 1186, 1775, 3482, 5257, 10103, 15360, ...
MATHEMATICA
Flatten[Table[Sum[(n/(n-j))*Binomial[n-j, j], {j, 0, k}], {n, 1, 15}, {k, 0, Floor[n/2]}]] (* Stefano Spezia, Sep 03 2019 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Petros Hadjicostas, Sep 02 2019
STATUS
approved