OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..444
Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, La Matematica (2024). Preprint available as arXiv:2303.02240 [math.CO], 2023.
FORMULA
MAPLE
a:=series(mul(mul(mul((1+x^(i*j*k))^(1/(i*j*k)), k=1..55), j=1..55), i=1..55), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 22; CoefficientList[Series[Product[Product[Product[(1 + x^(i j k))^(1/(i j k)), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax} ], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Product[(1 + x^k)^(Sum[DivisorSigma[0, d], {d, Divisors[k]}]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = (n - 1)! Sum[Sum[(-1)^(k/d + 1) Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 06 2018
STATUS
approved