[go: up one dir, main page]

login
A318224
a(n) = n! * [x^n] exp(x/(1 + n*x)).
2
1, 1, -3, 37, -1007, 47901, -3514499, 367671697, -51952729023, 9529552851193, -2201241933756899, 625136460673954461, -214066473170125310063, 86976878219664125966677, -41368038169392401671082787, 22767783580493235411255966601, -14356419990032448099044028030719
OFFSET
0,3
FORMULA
a(n) = n! * [x^n] Product_{k>=1} exp((-n)^(k-1)*x^k).
a(n) = Sum_{k=0..n} (-n)^(n-k)*binomial(n-1,k-1)*n!/k!.
a(n) ~ -(-1)^n * c * n^(2*n - 1/2) / exp(n), where c = BesselJ(1,2) * sqrt(2*Pi) = 1.44563470980450699365002928132323794056211645203313522173628289... - Vaclav Kotesovec, Aug 21 2018
MATHEMATICA
Table[n! SeriesCoefficient[Exp[x/(1 + n x)], {x, 0, n}], {n, 0, 16}]
Join[{1}, Table[Sum[(-n)^(n - k) Binomial[n - 1, k - 1] n!/k!, {k, n}], {n, 16}]]
Join[{1}, Table[(-1)^(n + 1) n^n (n - 1)! Hypergeometric1F1[1 - n, 2, 1/n], {n, 16}]]
Flatten[{1, Table[-(-1)^n * n^(n-1) * (n-1)! * LaguerreL[n-1, 1, 1/n], {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 21 2018 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 21 2018
STATUS
approved