[go: up one dir, main page]

login
A317613
Permutation of the nonnegative integers: lodumo_4 of A047247.
1
2, 3, 0, 1, 4, 5, 6, 7, 10, 11, 8, 9, 12, 13, 14, 15, 18, 19, 16, 17, 20, 21, 22, 23, 26, 27, 24, 25, 28, 29, 30, 31, 34, 35, 32, 33, 36, 37, 38, 39, 42, 43, 40, 41, 44, 45, 46, 47, 50, 51, 48, 49, 52, 53, 54, 55, 58, 59, 56, 57, 60, 61, 62, 63, 66, 67, 64
OFFSET
0,1
COMMENTS
Write n in base 8, then apply the following substitution to the rightmost digit: '0'->'2, '1'->'3', and vice versa. Convert back to decimal.
A self-inverse permutation: a(a(n)) = n.
Array whose columns are, in this order, A047463, A047621, A047451 and A047522, read by rows.
FORMULA
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + 2*a(n-7) - a(n-8), n > 7.
a(n) = (4*(floor(((2*n + 4) mod 8)/4) - floor(((n + 2) mod 8)/4)) + 2*n)/2.
a(n) = lod_4(A047247(n+1)).
a(4*n) = A047463(n+1).
a(4*n+1) = A047621(n+1).
a(4*n+2) = A047451(n+1).
a(4*n+3) = A047522(n+1).
a(A042948(n)) = A047596(n+1).
a(A042964(n+1)) = A047551(n+1).
G.f.: (x^7 + x^5 + 3*x^3 - 2*x^2 - x + 2)/((x-1)^2 * (x^2+1) * (x^4+1)).
E.g.f.: x*exp(x) + cos(x) + sin(x) + cos(x/sqrt(2))*cosh(x/sqrt(2)) + (sqrt(2)*cos(x/sqrt(2)) - sin(x/sqrt(2)))*sinh(x/sqrt(2)).
a(n+8) = a(n) + 8 . - Philippe Deléham, Mar 09 2023
Sum_{n>=3} (-1)^(n+1)/a(n) = 1/6 + log(2). - Amiram Eldar, Mar 12 2023
EXAMPLE
a(25) = a('3'1') = '3'3' = 27.
a(26) = a('3'2') = '3'0' = 24.
a(27) = a('3'3') = '3'1' = 25.
a(28) = a('3'4') = '3'4' = 28.
a(29) = a('3'5') = '3'5' = 29.
The sequence as array read by rows:
2, 3, 0, 1;
4, 5, 6, 7;
10, 11, 8, 9;
12, 13, 14, 15;
18, 19, 16, 17;
20, 21, 22, 23;
26, 27, 24, 25;
28, 29, 30, 31;
...
MATHEMATICA
Table[(4*(Floor[1/4 Mod[2*n + 4, 8]] - Floor[1/4 Mod[n + 2, 8]]) + 2*n)/2, {n, 0, 100}]
f[n_] := Block[{id = IntegerDigits[n, 8]}, FromDigits[ Join[Most@ id /. {{} -> {0}}, {id[[-1]] /. {0 -> 2, 1 -> 3, 2 -> 0, 3 -> 1}}], 8]]; Array[f, 67, 0] (* or *)
CoefficientList[ Series[(x^7 + x^5 + 3x^3 - 2x^2 - x + 2)/((x - 1)^2 (x^6 + x^4 + x^2 + 1)), {x, 0, 70}], x] (* or *)
LinearRecurrence[{2, -2, 2, -2, 2, -2, 2, -1}, {2, 3, 0, 1, 4, 5, 6, 7}, 70] (* Robert G. Wilson v, Aug 01 2018 *)
PROG
(Maxima) makelist((4*(floor(mod(2*n + 4, 8)/4) - floor(mod(n + 2, 8)/4)) + 2*n)/2, n, 0, 100);
(PARI) my(x='x+O('x^100)); Vec((x^7+x^5+3*x^3-2*x^2-x+2)/((1-x)^2*(x^6+x^4+ x^2+1))) \\ G. C. Greubel, Sep 25 2018
(Magma) m:=100; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^7+x^5+3*x^3-2*x^2-x+2)/((1-x)^2*(x^6+x^4+ x^2+1)))); // G. C. Greubel, Sep 25 2018
KEYWORD
nonn,easy,base
AUTHOR
STATUS
approved