[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317319
Multiples of 19 and odd numbers interleaved.
4
0, 1, 19, 3, 38, 5, 57, 7, 76, 9, 95, 11, 114, 13, 133, 15, 152, 17, 171, 19, 190, 21, 209, 23, 228, 25, 247, 27, 266, 29, 285, 31, 304, 33, 323, 35, 342, 37, 361, 39, 380, 41, 399, 43, 418, 45, 437, 47, 456, 49, 475, 51, 494, 53, 513, 55, 532, 57, 551, 59, 570, 61, 589, 63, 608, 65, 627, 67, 646, 69
OFFSET
0,3
COMMENTS
Partial sums give the generalized 23-gonal numbers (A303303).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 23-gonal numbers.
FORMULA
a(2n) = 19*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 19*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 19*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 17/2^s). - Amiram Eldar, Oct 26 2023
MATHEMATICA
a[n_] := If[OddQ[n], n, 19*n/2]; Array[a, 70, 0] (* Amiram Eldar, Oct 14 2023 *)
PROG
(PARI) concat(0, Vec(x*(1 + 19*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018
CROSSREFS
Cf. A008601 and A005408 interleaved.
Column 19 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A303303.
Sequence in context: A349406 A040353 A128160 * A002206 A040349 A274249
KEYWORD
nonn,easy,mult,changed
AUTHOR
Omar E. Pol, Jul 25 2018
STATUS
approved