[go: up one dir, main page]

login
A317246
Heinz numbers of supernormal integer partitions.
20
1, 2, 4, 6, 8, 12, 16, 18, 30, 32, 60, 64, 90, 128, 150, 180, 210, 256, 300, 360, 450, 512, 540, 600, 1024, 1350, 1500, 2048, 2250, 2310, 2520, 3780, 4096, 4200, 5880, 8192, 9450, 10500, 12600, 13230, 15750, 16384, 17640, 18900, 20580, 26460, 29400, 30030
OFFSET
1,2
COMMENTS
An integer partition is supernormal if either (1) it is of the form 1^n for some n >= 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a supernormal integer partition.
EXAMPLE
Sequence of supernormal integer partitions begins: (), (1), (11), (21), (111), (211), (1111), (221), (321), (11111), (3211), (111111), (3221), (1111111), (3321), (32211), (4321).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
supnrm[q_]:=Or[q=={}||Union[q]=={1}, And[Union[q]==Range[Max[q]], supnrm[Sort[Length/@Split[q], Greater]]]];
Select[Range[10000], supnrm[primeMS[#]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 24 2018
STATUS
approved