OFFSET
1,2
COMMENTS
An integer partition is supernormal if either (1) it is of the form 1^n for some n >= 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a supernormal integer partition.
EXAMPLE
Sequence of supernormal integer partitions begins: (), (1), (11), (21), (111), (211), (1111), (221), (321), (11111), (3211), (111111), (3221), (1111111), (3321), (32211), (4321).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
supnrm[q_]:=Or[q=={}||Union[q]=={1}, And[Union[q]==Range[Max[q]], supnrm[Sort[Length/@Split[q], Greater]]]];
Select[Range[10000], supnrm[primeMS[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 24 2018
STATUS
approved