Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 27 2021 10:14:43
%S 0,1,10,1316,840124672,6110726696100443604557936,
%T 439451426203104201222708341688051362423089952907263634936946272224
%N Total number of elements in all permutations of [n], [n+1], ... that result in a binary search tree of height n.
%C Empty external nodes are counted in determining the height of a search tree.
%H Alois P. Heinz, <a href="/A317012/b317012.txt">Table of n, a(n) for n = 0..9</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_search_tree">Binary search tree</a>
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F a(n) = Sum_{k=n..2^n-1} k * A195581(k,n) = Sum_{k=n..2^n-1} k * A244108(k,n).
%e a(2) = 10 = 2 + 3 + 3 + 2:
%e .
%e 2 2 1
%e / \ / \ / \
%e 1 o 1 3 o 2
%e / \ ( ) ( ) / \
%e o o o o o o o o
%e (2,1) (2,1,3) (2,3,1) (1,2)
%e .
%p b:= proc(n, k) option remember; `if`(n<2, `if`(k<n, 0, 1),
%p add(binomial(n-1, r)*b(r, k-1)*b(n-1-r, k-1), r=0..n-1))
%p end:
%p T:= (n, k)-> b(n, k)-b(n, k-1):
%p a:= k-> add(T(n, k)*n, n=k..2^k-1):
%p seq(a(n), n=0..6);
%t b[n_, k_] := b[n, k] = If[n < 2, If[k < n, 0, 1],
%t Sum[Binomial[n-1, r] b[r, k-1] b[n-1-r, k-1], {r, 0, n-1}]];
%t T[n_, k_] := b[n, k] - b[n, k-1];
%t a[k_] := Sum[T[n, k] n, {n, k, 2^k - 1}];
%t a /@ Range[0, 6] (* _Jean-François Alcover_, Jan 27 2021, after _Alois P. Heinz_ *)
%Y Cf. A195581, A227822, A244108, A335922.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Jul 18 2018