[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317012
Total number of elements in all permutations of [n], [n+1], ... that result in a binary search tree of height n.
5
0, 1, 10, 1316, 840124672, 6110726696100443604557936, 439451426203104201222708341688051362423089952907263634936946272224
OFFSET
0,3
COMMENTS
Empty external nodes are counted in determining the height of a search tree.
FORMULA
a(n) = Sum_{k=n..2^n-1} k * A195581(k,n) = Sum_{k=n..2^n-1} k * A244108(k,n).
EXAMPLE
a(2) = 10 = 2 + 3 + 3 + 2:
.
2 2 1
/ \ / \ / \
1 o 1 3 o 2
/ \ ( ) ( ) / \
o o o o o o o o
(2,1) (2,1,3) (2,3,1) (1,2)
.
MAPLE
b:= proc(n, k) option remember; `if`(n<2, `if`(k<n, 0, 1),
add(binomial(n-1, r)*b(r, k-1)*b(n-1-r, k-1), r=0..n-1))
end:
T:= (n, k)-> b(n, k)-b(n, k-1):
a:= k-> add(T(n, k)*n, n=k..2^k-1):
seq(a(n), n=0..6);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n < 2, If[k < n, 0, 1],
Sum[Binomial[n-1, r] b[r, k-1] b[n-1-r, k-1], {r, 0, n-1}]];
T[n_, k_] := b[n, k] - b[n, k-1];
a[k_] := Sum[T[n, k] n, {n, k, 2^k - 1}];
a /@ Range[0, 6] (* Jean-François Alcover, Jan 27 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 18 2018
STATUS
approved