[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316940
Smallest "anti-Carmichael pseudoprime" to base n.
3
35, 7957, 16531, 1247, 17767, 35, 817, 2501, 697, 4141, 2257, 143, 9577, 2257, 4187, 1247, 3991, 221, 7957, 2059, 55, 161, 1027, 115, 403, 475, 247, 4553, 35, 247, 6289, 697, 1853, 35, 1247, 35, 589, 221, 95, 533, 35, 559, 77, 215, 253, 235, 221, 329, 247, 119
OFFSET
1,1
COMMENTS
a(n) is the smallest k such that n^(k-1) == 1 (mod k) and p-1 does not divide k-1 for every prime p dividing k.
All listed terms are semiprime and squarefree, except a(26) = 475 = 5^2*19.
LINKS
MATHEMATICA
Table[Block[{k = 2}, While[Nand[PowerMod[n, k - 1, k] == 1, AllTrue[FactorInteger[k][[All, 1]] - 1, Mod[k - 1, #] != 0 &]], k++]; k], {n, 50}] (* Michael De Vlieger, Jul 20 2018 *)
PROG
(PARI) isok(k, n) = {if (!isprime(k) && Mod(n, k)^(k-1) == 1, f = factor(k)[, 1]; for (j=1, #f~, if (!((k-1) % (f[j]-1)), return (0)); ); return (1); ); return (0); }
a(n) = {my(k=2); while(!isok(k, n), k++); k; } \\ Michel Marcus, Jul 17 2018
CROSSREFS
Cf. A121707 (probably "anti-Carmichael numbers": n such that p-1 does not divide n-1 for every prime p dividing n).
Cf. A316907 ("anti-Carmichael pseudoprimes" to base 2).
Sequence in context: A224126 A249888 A212025 * A202066 A271071 A249889
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Jul 17 2018
EXTENSIONS
More terms from Michel Marcus, Jul 17 2018
STATUS
approved