Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jul 10 2018 08:01:22
%S 1,10,78,561,3885,26565,180285,1221554,8272252,56063900,380361212,
%T 2583878630,17575724491,119705606020,816297170565,5572946307857,
%U 38088275031435,260576838539320,1784382167211378,12229792806897910,83888652677221112,575858960208964685,3955813057814040153,27192049709537787123,187032147327469550926,1287187641890879422980,8863461073824746853534,61064188079233277265138,420899733623010047381885,2902469328540659624278455
%N a(n) equals the coefficient of x^n in Sum_{m>=0} (x^m + 5 + 1/x^m)^m for n >= 1.
%C The coefficient of 1/x^n in Sum_{m>=0} (x^m + 5 + 1/x^m)^m equals a(n) for n > 0, while the constant term in the sum increases without limit.
%C a(n) = Sum_{k=0..n-1} A316590(n,k) * 5^k for n >= 1.
%H Paul D. Hanna, <a href="/A316595/b316595.txt">Table of n, a(n) for n = 1..260</a>
%F a(n) ~ 7^(n + 1/2) / (2*sqrt(Pi*n)). - _Vaclav Kotesovec_, Jul 10 2018
%e G.f.: A(x) = x + 10*x^2 + 78*x^3 + 561*x^4 + 3885*x^5 + 26565*x^6 + 180285*x^7 + 1221554*x^8 + 8272252*x^9 + 56063900*x^10 + ...
%e such that Sum_{m>=0} (x^m + 5 + 1/x^m)^m = A(x) + A(1/x) + (infinity)*x^0.
%o (PARI) {a(n) = polcoeff( sum(m=1,n, (x^-m + 5 + x^m)^m +x*O(x^n)), n,x)}
%o for(n=1,40, print1(a(n),", "))
%Y Cf. A304638, A316590, A316591, A316592, A316593, A316594.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Jul 08 2018