[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316158
Expansion of e.g.f. exp(exp(exp(x*exp(x)) - 1) - 1).
1
1, 1, 5, 33, 280, 2883, 34817, 481477, 7489454, 129259662, 2448516959, 50460561330, 1123192711285, 26838555204646, 684871918806173, 18580595826856937, 533846105922876855, 16187892824592956798, 516492582419620294678, 17292646954057122160416, 606075769032914504000388
OFFSET
0,3
COMMENTS
Natural numbers exponentiated thrice.
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
MAPLE
a:= (proc(p) local g; g:= proc(n) option remember; `if`(n=0, 1,
p(n)+add(binomial(n-1, k-1)*p(k)*g(n-k), k=1..n-1))
end end@@3)(j-> j):
seq(a(n), n=0..20); # Alois P. Heinz, Jun 25 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[Exp[Exp[x Exp[x]] - 1] - 1], {x, 0, nmax}], x] Range[0, nmax]!
b[n_] := b[n] = Sum[k^(n - k) Binomial[n, k] BellB[k], {k, n}]; a[n_] := a[n] = Sum[b[k] Binomial[n - 1, k - 1] a[n - k], {k, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 25 2018
STATUS
approved