[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316094
FDH numbers of strict integer partitions with odd parts.
1
1, 2, 4, 7, 8, 11, 14, 16, 19, 22, 25, 28, 31, 32, 38, 41, 44, 47, 50, 53, 56, 61, 62, 64, 71, 76, 77, 79, 82, 83, 88, 94, 97, 100, 101, 103, 106, 107, 109, 112, 113, 121, 122, 124, 127, 128, 131, 133, 137, 139, 142, 149, 151, 152, 154, 157, 158, 163, 164, 166
OFFSET
1,2
COMMENTS
Also numbers n such that A305829(n) is odd.
Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).
EXAMPLE
Sequence of all integer partitions with distinct odd parts begins (), (1), (3), (5), (3,1), (7), (5,1), (9), (11), (7,1), (13), (5,3), (15), (9,1), (11,1), (17), (7,3), (19), (13,1), (21), (5,3,1), (23), (15,1), (9,3), (25), (11,3), (7,5), (27), (17,1), (29), (7,3,1), (19,1), (31).
MATHEMATICA
nn=100;
FDfactor[n_]:=If[n==1, {}, Sort[Join@@Cases[FactorInteger[n], {p_, k_}:>Power[p, Cases[Position[IntegerDigits[k, 2]//Reverse, 1], {m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor, nn, 1, Union]; FDrules=MapIndexed[(#1->#2[[1]])&, FDprimeList];
Select[Range[nn], OddQ[Times@@(FDfactor[#]/.FDrules)]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 24 2018
STATUS
approved