[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of minimal total dominating sets in the n-Moebius ladder.
1

%I #15 Apr 23 2018 14:28:33

%S 0,6,9,14,25,57,196,222,441,851,1936,3281,6084,12662,24964,48830,

%T 93636,188265,369664,725859,1423249,2798582,5503716,10790049,21206025,

%U 41601462,81703521,160396110,314991504,618413702,1214104336,2384319102,4681706929,9192838950

%N Number of minimal total dominating sets in the n-Moebius ladder.

%C Sequence extrapolated to n=1 using recurrence.

%H Andrew Howroyd, <a href="/A303162/b303162.txt">Table of n, a(n) for n = 1..200</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MoebiusLadder.html">Moebius Ladder</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotalDominatingSet.html">Total Dominating Set</a>

%H <a href="/index/Rec#order_32">Index entries for linear recurrences with constant coefficients</a>, signature (2, -2, 3, 4, -7, 5, 0, -21, 39, -24, 21, 33, -36, 63, -33, 0, 33, -63, 36, -33, -21, 24, -39, 21, 0, -5, 7, -4, -3, 2, -2, 1).

%F G.f.: x^2*(6 - 3*x + 8*x^2 - 3*x^3 - 16*x^4 + 96*x^5 - 154*x^6 + 171*x^7 - 172*x^8 - 105*x^9 + 74*x^10 - 280*x^11 - 8*x^12 + 91*x^13 - 508*x^14 + 289*x^15 - 386*x^16 - 64*x^17 - 124*x^18 - 231*x^19 - 28*x^20 - 63*x^21 - 28*x^22 + 96*x^23 - 46*x^24 + 39*x^25 - 16*x^26 - 21*x^27 + 18*x^28 - 12*x^29 + 6*x^30)/((1 - x)*(1 + x)*(1 - 2*x - x^2 + 3*x^3 - x^4 - 2*x^5 + x^6)*(1 - 4*x + 10*x^2 - 19*x^3 + 28*x^4 - 34*x^5 + 37*x^6 - 34*x^7 + 28*x^8 - 19*x^9 + 10*x^10 - 4*x^11 + x^12)*(1 + 4*x + 10*x^2 + 19*x^3 + 28*x^4 + 34*x^5 + 37*x^6 + 34*x^7 + 28*x^8 + 19*x^9 + 10*x^10 + 4*x^11 + x^12)). - _Andrew Howroyd_, Apr 19 2018

%t Table[3 - 3 (-1)^n + RootSum[1 - 2 # - #^2 + 3 #^3 - #^4 - 2 #^5 + #^6 &, #^n &] - RootSum[1 - 4 # + 10 #^2 - 19 #^3 + 28 #^4 - 34 #^5 + 37 #^6 - 34 #^7 + 28 #^8 - 19 #^9 + 10 #^10 - 4 #^11 + #^12 &, #^n &] + RootSum[1 + 4 # + 10 #^2 + 19 #^3 + 28 #^4 + 34 #^5 + 37 #^6 + 34 #^7 + 28 #^8 + 19 #^9 + 10 #^10 + 4 #^11 + #^12 &, #^n &], {n, 200}]

%t LinearRecurrence[{2, -2, 3, 4, -7, 5, 0, -21, 39, -24, 21, 33, -36,

%t 63, -33, 0, 33, -63, 36, -33, -21, 24, -39, 21, 0, -5, 7, -4, -3,

%t 2, -2, 1}, {0, 6, 9, 14, 25, 57, 196, 222, 441, 851, 1936, 3281,

%t 6084, 12662, 24964, 48830, 93636, 188265, 369664, 725859, 1423249,

%t 2798582, 5503716, 10790049, 21206025, 41601462, 81703521, 160396110,314991504, 618413702, 1214104336, 2384319102}, 200]

%t Rest @ CoefficientList[Series[x^2 (6 - 3 x + 8 x^2 - 3 x^3 - 16 x^4 + 96 x^5 - 154 x^6 + 171 x^7 - 172 x^8 - 105 x^9 + 74 x^10 - 280 x^11 - 8 x^12 + 91 x^13 - 508 x^14 + 289 x^15 - 386 x^16 - 64 x^17 - 124 x^18 - 231 x^19 - 28 x^20 - 63 x^21 - 28 x^22 + 96 x^23 - 46 x^24 + 39 x^25 - 16 x^26 - 21 x^27 + 18 x^28 - 12 x^29 + 6 x^30)/((1 - x) (1 + x) (1 - 2 x - x^2 + 3 x^3 - x^4 - 2 x^5 + x^6) (1 - 4 x + 10 x^2 - 19 x^3 + 28 x^4 - 34 x^5 + 37 x^6 - 34 x^7 + 28 x^8 - 19 x^9 + 10 x^10 - 4 x^11 + x^12) (1 + 4 x + 10 x^2 + 19 x^3 + 28 x^4 + 34 x^5 + 37 x^6 + 34 x^7 + 28 x^8 + 19 x^9 + 10 x^10 + 4 x^11 + x^12)), {x, 0, 200}], x]

%Y Cf. A284663, A290337, A295420, A303006, A303046.

%K nonn,easy

%O 1,2

%A _Eric W. Weisstein_, Apr 19 2018

%E a(1)-a(2) and terms a(11) and beyond from _Andrew Howroyd_, Apr 19 2018