[go: up one dir, main page]

login
A302933
Sequence gives the denominators, in increasing values, of Egyptian fractions such that their sum has the concatenation of these denominators as decimal part. Case a(1) = 10.
21
10, 316, 617610, 803725588973, 456253083482572713037551, 9436780443304881627624731251391047815103579902912, 8811274352857743968291587376477872559585373990088713924172205514999092985039105968614771201466142
OFFSET
1,1
COMMENTS
There are only three possible sequences of this kind: one starting from 3 (A302932), another from 4 (A304286) and another from 10 (this sequence).
LINKS
Eric Weisstein's World of Mathematics, Egyptian fraction
Eric Weisstein's World of Mathematics, Trott constants (similar but with continued fractions)
EXAMPLE
We start from 10 because 1/10 = 0.1000...
Then the next integer is 316 because 1/10 + 1/316 = 0.10316455... and so on.
The sum is 0.10 316 617610 803725588973 456253083482572713037551 ...
MAPLE
P:=proc(q) local a, b, d, n; a:=1/10; b:=2; d:=10; print(d);
for n from 1 to q do if trunc(evalf(a+1/n, 100)*10^(b+ilog10(n)+1))=d*10^(ilog10(n)+1)+n then b:=b+ilog10(n)+1; d:=d*10^(ilog10(n)+1)+n; a:=a+1/n; print(n); fi;
od; end: P(10^20);
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Apr 16 2018
EXTENSIONS
a(4)-a(7) from Giovanni Resta, Apr 16 2018
STATUS
approved