[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302865
a(n) = (4*n+2)*a(n-1) + (-1)^(n+1)*4*((n-1)!), with a(0) = 8, n > 0.
2
8, 52, 516, 7232, 130152, 2863440, 74448960, 2233471680, 75938016960, 2885644805760, 121197080390400, 5575065712473600, 278753285464012800, 15052677416972697600, 873055290159508377600, 54129427990238232576000, 3572542247350492652544000, 250077957314618176837632000
OFFSET
0,1
LINKS
Travis Sherman, Summation of Glaisher- and Apery-like Series, University of Arizona, May 23 2000, p. 14, (3.84) - (3.88).
FORMULA
a(n-1) = f1(n)*(-1)^(n-1)*5*((n-1)!), where f1(n) corresponds to the x values such that Sum_{k>=0} (-1)^k/(binomial(2*k,k)*(k+n)) = x*sqrt(5)*log(phi) + y*(log(phi))^2 + z. (See examples for connection with a(n) in terms of material at Links section.)
f2(n) corresponds to the y values, so f2(n) = (-1)^n*4*((2*n-1)!/((n-1)!)^2).
EXAMPLE
Examples ((3.84) - (3.88)) at page 14 in Links section as follows, respectively.
For n=1, f1(1) = 8/5, so a(0) = 8.
For n=2, f1(2) = -52/5, so a(1) = 52.
For n=3, f1(3) = 258/5, so a(2) = 516.
For n=4, f1(4) = -3616/15, so a(3) = 7232.
For n=5, f1(5) = 5423/5, so a(4) = 130152.
MATHEMATICA
Fold[Append[#1, (4 #2 + 2) #1[[#2]] + (-1)^(#2 + 1) 4 ((#2 - 1)!)] &, {8}, Range@ 19] (* Michael De Vlieger, Apr 14 2018 *)
nmax = 15; Table[CoefficientList[1/Sqrt[5]*TrigToExp[Expand[FunctionExpand[ Table[Sum[(-1)^j/(Binomial[2*j, j]*(j + m)), {j, 0, Infinity}], {m, 1, nmax}]]]], Log[1/2 + Sqrt[5]/2]][[n, 2]]*(-1)^(n - 1)*5*(n - 1)!, {n, 1, nmax}] (* Vaclav Kotesovec, Apr 15 2018 *)
PROG
(PARI) my(a=vector(20)); a[1]=8; for(n=2, #a, a[n]=(4*n-2)*a[n-1] + (-1)^(n)*4*(n-2)!); a \\
(Magma) [n le 1 select 8 else (4*n-2)*Self(n-1) + (-1)^(n)*4*Factorial(n-2): n in [1..20]]; // Vincenzo Librandi, Apr 17 2019
CROSSREFS
Cf. A302866.
Sequence in context: A130153 A359126 A199700 * A116171 A303966 A304928
KEYWORD
nonn
AUTHOR
Detlef Meya, Apr 14 2018
STATUS
approved