[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302396
Number of families of 4-subsets of an n-set that cover every element.
2
1, 0, 0, 0, 1, 26, 32596, 34359509614, 1180591620442534312297, 85070591730234605240519066638188154620, 1645504557321206042154968331851433202636630333819989444275003856
OFFSET
0,6
COMMENTS
Number of simple 4-uniform hypergraphs of order n without isolated vertices.
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k) * 2^binomial(n-k,4).
EXAMPLE
For n=5 all families with at least two 4-sets will cover every element.
MAPLE
seq(add((-1)^k * binomial(n, k) * 2^binomial(n-k, 4), k = 0..n), n=0..12)
MATHEMATICA
Array[Sum[(-1)^k*Binomial[#, k] 2^Binomial[# - k, 4], {k, 0, #}] &, 11, 0] (* Michael De Vlieger, Apr 07 2018 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*2^binomial(n-k, 4)); \\ Michel Marcus, Apr 07 2018
(GAP) Flat(List([0..10], n->Sum([0..n], k->(-1)^k*Binomial(n, k)*2^Binomial(n-k, 4)))); # Muniru A Asiru, Apr 07 2018
CROSSREFS
Column 4 of A299471.
Cf. A302394.
Sequence in context: A359054 A359052 A209961 * A208186 A316677 A092212
KEYWORD
nonn,easy
AUTHOR
Brendan McKay, Apr 07 2018
STATUS
approved