Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #51 Sep 08 2022 08:46:20
%S 1,10,61,358,2089,12178,70981,413710,2411281,14053978,81912589,
%T 477421558,2782616761,16218279010,94527057301,550944064798,
%U 3211137331489,18715879924138,109084142213341,635788973355910,3705649697922121,21598109214176818,125883005587138789,733699924308655918
%N Expansion of (1 + 3*x - 2*x^2)/(1 - 7*x + 7*x^2 - x^3).
%C y solutions to A000217(x-1) + A000217(x) = A000290(y-1) + A000290(y+2). The corresponding x values are listed in A075841.
%C y solutions to A000217(x-1) + A000217(x) = A000290(y-1) + A000290(y+1) are in A002315, and A075870 gives the x values.
%C y solutions to A000217(x-1) + A000217(x) = A000290(y-1) + A000290(y) are in A046090, and A001653 gives the x values.
%C Also, indices y for which 4*A000217(y) + 5 is a square. The next integers k such that k*A000217(y) + 5 is a square for infinitely many y values are 11, 20, 22, 29, 31, ...
%C First differences are in A106329.
%H Robert Israel, <a href="/A301383/b301383.txt">Table of n, a(n) for n = 0..1304</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-7,1).
%F O.g.f.: (1 + 3*x - 2*x^2)/((1 - x)*(1 - 6*x + x^2)).
%F a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) = 6*a(n-1) - a(n-2) + 2.
%F a(n) = (3/4)*((1 + sqrt(2))^(2*n + 1) + (1 - sqrt(2))^(2*n + 1)) - 1/2.
%F a(n) = A033539(2*n+2) = A241976(n+1) + 1 = 3*A001652(n) + 1 = 3*A046090(n) - 2.
%F a(n) = A053142(n+1) + 3*A053142(n) - 2*A053142(n-1), n>0.
%F 2*a(n) = 3*A002315(n) - 1.
%F 4*a(n) = 3*A077444(n+1) - 2.
%F E.g.f.: (3*exp(3*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)) - cosh(x) - sinh(x))/2. - _Stefano Spezia_, Mar 06 2020
%F Let T(n) be the n-th triangular number, A000217(n). Then T(a(n)-3) + 2*T(a(n)-2) + 3*T(a(n)-1) + 4*T(a(n)) + 3*T(a(n)+1) + 2*T(a(n)+2) + T(a(n)+3) = (A001653(n) + A001653(n+2))^2. - _Charlie Marion_, Mar 16 2021
%p f:= gfun:-rectoproc({a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3), a(0)=1,a(1)=10,a(2)=61},a(n),remember):
%p map(f, [$0..50]); # _Robert Israel_, Mar 21 2018
%t CoefficientList[Series[(1 + 3 x - 2 x^2)/(1 - 7 x + 7 x^2 - x^3), {x, 0, 30}], x]
%o (PARI) Vec((1+3*x-2*x^2)/(1-7*x+7*x^2-x^3)+O(x^30))
%o (Maxima) makelist(coeff(taylor((1+3*x-2*x^2)/(1-7*x+7*x^2-x^3), x, 0, n), x, n), n, 0, 30);
%o (Sage) m=30; L.<x> = PowerSeriesRing(ZZ, m); f=(1+3*x-2*x^2)/(1-7*x+7*x^2-x^3); print(f.coefficients())
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x-2*x^2)/(1-7*x+7*x^2-x^3)));
%o (Julia)
%o using Nemo
%o function A301383List(len)
%o R, x = PowerSeriesRing(ZZ, len+2, "x")
%o f = divexact(1+3*x-2*x^2, 1-7*x+7*x^2-x^3)
%o [coeff(f, k) for k in 0:len]
%o end
%o A301383List(23) |> println # _Peter Luschny_, Mar 21 2018
%Y Subsequence of A301451.
%Y Cf. A000217, A000290, A001652, A002315, A033539, A046090, A053142, A075841, A077444, A106329, A241976.
%K nonn,easy
%O 0,2
%A _Bruno Berselli_, Mar 20 2018