Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Mar 20 2018 10:31:43
%S 1,1,3,37,1009,44541,2799931,233188033,24562692897,3168510747769,
%T 488856473079571,88597562768075901,18595324838343722833,
%U 4468203984338696710837,1217521669261709053889739,373205252376454629490607641,127806482596653000272128733761,48605321514711360780713536416753,20419150659462692416601828820774307,9431006202634362924849710001022454869
%N E.g.f. A(x) satisfies: [x^n] A(x)^(3*n) = (n + 2) * [x^(n-1)] A(x)^(3*n) for n>=1.
%C Compare to: [x^n] exp(x)^(3*n) = 3 * [x^(n-1)] exp(x)^(3*n) for n>=1.
%H Paul D. Hanna, <a href="/A300986/b300986.txt">Table of n, a(n) for n = 0..200</a>
%F E.g.f. A(x) satisfies: A(x) = exp( x * (A(x) - 2*x*A'(x)) / (A(x) - 3*x*A'(x)) ).
%F a(n) ~ c * (n!)^2 * n^5, where c = 0.0001464056080437... - _Vaclav Kotesovec_, Mar 20 2018
%e E.g.f.: A(x) = 1 + x + 3*x^2/2! + 37*x^3/3! + 1009*x^4/4! + 44541*x^5/5! + 2799931*x^6/6! + 233188033*x^7/7! + 24562692897*x^8/8! + 3168510747769*x^9/9! + 488856473079571*x^10/10! + ...
%e such that [x^n] A(x)^(3*n) = (n+2) * [x^(n-1)] A(x)^(3*n) for n>=1.
%e RELATED SERIES.
%e A(x)^3 = 1 + 3*x + 15*x^2/2! + 171*x^3/3! + 4185*x^4/4! + 173583*x^5/5! + 10491039*x^6/6! + 850141575*x^7/7! + 87745941873*x^8/8! + 11141030530395*x^9/9! + ...
%e ILLUSTRATION OF DEFINITION.
%e The table of coefficients in A(x)^(3*n) begins:
%e n=1: [(1), (3), 15/2, 57/2, 1395/8, 57861/40, 1165671/80, 18892035/112, ...];
%e n=2: [1, (6), (24), 102, 576, 21834/5, 206244/5, 15974712/35, ...];
%e n=3: [1, 9, (99/2), (495/2), 11259/8, 401463/40, 7120899/80, 525246849/560, ...];
%e n=4: [1, 12, 84, (492), (2952), 102708/5, 864756/5, 60722784/35, ...];
%e n=5: [1, 15, 255/2, 1725/2, (44595/8), (312165/8), 5077035/16, 340795215/112, ...];
%e n=6: [1, 18, 180, 1386, 9720, (349542/5), (2796336/5), 36178488/7, ...];
%e n=7: [1, 21, 483/2, 4179/2, 127323/8, 4767147/40, (76271139/80), (686440251/80), ...]; ...
%e in which the coefficients in parenthesis are related by
%e 3 = 3*(1); 24 = 4*(6); 495/2 = 5*(99/2); 2952 = 6*(492); 312165/8 = 7*(44595/8); 2796336/5 = 8*(349542/5); 686440251/80 = 9*(76271139/80); ...
%e illustrating that: [x^n] A(x)^(3*n) = (n+2) * [x^(n-1)] A(x)^(3*n).
%e LOGARITHMIC PROPERTY.
%e The logarithm of the e.g.f. is an integer power series in x satisfying
%e log(A(x)) = x * (1 - 2*x*A'(x)/A(x)) / (1 - 3*x*A'(x)/A(x));
%e explicitly,
%e log(A(x)) = x + x^2 + 5*x^3 + 36*x^4 + 327*x^5 + 3489*x^6 + 42048*x^7 + 559008*x^8 + 8073243*x^9 + 125328411*x^10 + 2075525505*x^11 + 36460943208*x^12 + ... + A300987(n)*x^n + ...
%o (PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(3*(#A-1))); A[#A] = ((#A+1)*V[#A-1] - V[#A])/(3*(#A-1)) ); n!*polcoeff( Ser(A), n)}
%o for(n=0, 25, print1(a(n), ", "))
%o (PARI) {a(n) = my(A=1); for(i=1, n, A = exp( x*(A-2*x*A')/(A-3*x*A' +x*O(x^n)) ) ); n!*polcoeff(A, n)}
%o for(n=0, 25, print1(a(n), ", "))
%Y Cf. A300987, A182962, A300735, A300988, A300990, A300992.
%Y Cf. A300870, A300590, A296170.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Mar 17 2018