[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300849
Number of 6-cycles in the n-Keller graph.
4
0, 320, 103493760, 1989020096512, 18004320077137920, 119822580205402103808, 679908187040469153808384, 3502748255987493030839058432, 16926129866817207966343976976384, 78226597001366370548567920133275648, 350205926622184430366093984866429304832
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Keller Graph
FORMULA
Terms satisfy an order-73 linear recurrence (with very large coefficients). - Eric W. Weisstein, Mar 20 2018.
a(n) = (4^(-1 + n)*(11*2^(1 + 6*n) - 4*3^n - 2^(1 + 8*n)*3^(1 + n) - 5*2^(1 + 4*n)*3^(2 + n) - 8*3^(1 + 2*n) + 19*2^(1 + 2*n)*3^(1 + 3*n) - 17*3^(1 + 4*n) - 2*3^(1 + 5*n) + 49*3^(1 + 2*n)*4^n + 5*3^(1 + 4*n)*4^n + 4^(1 + n) + 3^(2 + n)*4^(1 + n) + 3^(1 + n)*4^(2 + 3*n) + 4*7^n - 9*2^(1 + 2*n)*7^n + 3*2^(1 + 4*n)*7^n + 17*3^(1 + n)*7^n - 2^(3 + 2*n)*3^(1 + n)*7^n + 8*3^(1 + 2*n)*7^n - 35*3^(1 + 2*n)*16^n - 16^(1 + n) - 9*17^n - 103*27^n - 5*4^(1 + 2*n)*27^n - 3*49^n + 5*3^(1 + 2*n)*64^n + 183^n - 9*256^n + 1024^n))/3 - (4^(-1 + n)*n*(-3333960*61^n + 549*7^n*(-40914 + 19845*2^(1 + 2*n) - 53473*3^n) + 62769*(10*3^(3 + 4*n) - 4*27^(1 + n)*(-14 + 5*4^n) + 9^(1 + n)*(167 - 153*2^(1 + 2*n) + 15*4^(1 + 2*n)) - 2*3^n*(277 + 207*4^(1 + n) - 891*16^n + 135*64^n) + 54*(7 + 4^n + 3*4^(1 + 2*n) - 8^(1 + 2*n) + 256^n)) + 61*n*(-90*7^n*(5373 + 1400*3^n + 1296*n) + 343*(20*3^(4 + 3*n) - 10*3^(3 + 2*n)*(-23 + 9*4^n - 6*n) + 2*3^n*(1603 + 405*2^(1 + 4*n) + 1752*n + 365*n^2 - 135*4^n*(29 + 6*n)) + 27*(-51 - 15*64^n + 16*n + 51*n^2 + 6*n^3 + 5*16^n*(21 + 4*n) - 3*4^n*(25 + n*(38 + 5*n)))))))/1694763. - Eric W. Weisstein, Mar 20 2018
PROG
(PARI) \\ Requires G function from A300818
\\ this takes a few seconds per term
seq(n)={my(q2=G(n, 2, [0..3])*4, q3=G(n, 3, [0..15])*6, q4=G(n, 4, [0..63])*8, q6=G(n, 6, [0..1023])*12, diamonds=G(n, 6, apply(t->bitor(t, bitand(t, 12)<<6), [0..63]))*12);
vector(n, n, (q6[n] - (6*q4[n]*q2[n] + 3*q3[n]^2)/4^n + 6*q4[n] + 9*diamonds[n] + 7*q2[n]^3/16^n - 12*q2[n]^2/4^n - 4*q3[n] + 4*q2[n])/12)
} \\ Andrew Howroyd, Mar 16 2018
CROSSREFS
Cf. A300818 (3-cycles), A300842 (4-cycles), A300848 (5-cycles).
Sequence in context: A121011 A264063 A174778 * A351994 A261262 A308527
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Mar 13 2018
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Mar 16 2018
STATUS
approved