[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of unlabeled rooted phylogenetic trees with n (leaf-) nodes such that for each inner node all children are either leaves or roots of distinct subtrees.
37

%I #37 Feb 07 2020 09:04:42

%S 0,1,1,2,3,6,13,30,72,182,467,1222,3245,8722,23663,64758,178459,

%T 494922,1380105,3867414,10884821,30756410,87215419,248117618,

%U 707952902,2025479210,5809424605,16700811214,48113496645,138884979562,401645917999,1163530868090

%N Number of unlabeled rooted phylogenetic trees with n (leaf-) nodes such that for each inner node all children are either leaves or roots of distinct subtrees.

%C From _Gus Wiseman_, Jul 31 2018 and Feb 06 2020: (Start)

%C a(n) is the number of lone-child-avoiding rooted identity trees whose leaves form an integer partition of n. For example, the following are the a(6) = 13 lone-child-avoiding rooted identity trees whose leaves form an integer partition of 6.

%C 6,

%C (15),

%C (24),

%C (123), (1(23)), (2(13)), (3(12)),

%C (1(14)),

%C (1(1(13))),

%C (12(12)), (1(2(12))), (2(1(12))),

%C (1(1(1(12)))).

%C (End)

%H Alois P. Heinz, <a href="/A300660/b300660.txt">Table of n, a(n) for n = 0..2079</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Phylogenetic_tree">Phylogenetic tree</a>

%H Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a>

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>

%F a(n) ~ c * d^n / n^(3/2), where d = 3.045141208159736483720243229947630323380565686... and c = 0.2004129296838557718008171812000512670126... - _Vaclav Kotesovec_, Aug 27 2018

%e : a(3) = 2: : a(4) = 3: :

%e : o o : o o o :

%e : / \ /|\ : / \ / \ /( )\ :

%e : o N N N N : o N o N N N N N :

%e : ( ) : / \ /|\ :

%e : N N : o N N N N :

%e : : ( ) :

%e : : N N :

%e From _Gus Wiseman_, Feb 06 2020: (Start)

%e The a(2) = 1 through a(6) = 13 unlabeled rooted phylogenetic semi-identity trees:

%e (oo) (ooo) (oooo) (ooooo) (oooooo)

%e ((o)(oo)) ((o)(ooo)) ((o)(oooo)) ((o)(ooooo))

%e ((o)((o)(oo))) ((oo)(ooo)) ((oo)(oooo))

%e ((o)((o)(ooo))) ((o)(oo)(ooo))

%e ((oo)((o)(oo))) (((o)(oo))(ooo))

%e ((o)((o)((o)(oo)))) ((o)((o)(oooo)))

%e ((o)((oo)(ooo)))

%e ((oo)((o)(ooo)))

%e ((o)(oo)((o)(oo)))

%e ((o)((o)((o)(ooo))))

%e ((o)((oo)((o)(oo))))

%e ((oo)((o)((o)(oo))))

%e ((o)((o)((o)((o)(oo)))))

%e (End)

%p b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i)))

%p end:

%p a:= n-> `if`(n=0, 0, 1+b(n, n-1)):

%p seq(a(n), n=0..30);

%t b[0, _] = 1; b[_, _?NonPositive] = 0;

%t b[n_, i_] := b[n, i] = Sum[b[n-i*j, i-1]*Binomial[a[i], j], {j, 0, n/i}];

%t a[0] = 0; a[n_] := a[n] = 1 + b[n, n-1];

%t Table[a[n], {n, 0, 31}] (* _Jean-François Alcover_, May 03 2019, from Maple *)

%t ursit[n_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@#&],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}],n];

%t Table[Length[ursit[n]],{n,10}] (* _Gus Wiseman_, Feb 06 2020 *)

%Y Cf. A000081, A004111, A141268, A289501, A301467.

%Y Cf. A000669, A001678, A005804, A292504, A300660, A316653, A316654, A316656.

%Y The locally disjoint case is A316694.

%Y Cf. A276625, A306200, A319312, A331679, A331686, A331875.

%K nonn,eigen

%O 0,4

%A _Alois P. Heinz_, Jun 18 2018