[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309949
Decimal expansion of the imaginary part of the square root of 1 + i.
3
4, 5, 5, 0, 8, 9, 8, 6, 0, 5, 6, 2, 2, 2, 7, 3, 4, 1, 3, 0, 4, 3, 5, 7, 7, 5, 7, 8, 2, 2, 4, 6, 8, 5, 6, 9, 6, 2, 0, 1, 9, 0, 3, 7, 8, 4, 8, 3, 1, 5, 0, 0, 9, 2, 5, 8, 8, 2, 5, 9, 5, 6, 9, 4, 9, 0, 8, 0, 0, 2, 0, 3, 2, 3, 3, 4, 4, 8, 2, 9, 1, 5, 9, 1, 4, 0, 1, 8, 1, 9, 7, 6, 1, 0, 2
OFFSET
0,1
COMMENTS
i is the imaginary unit such that i^2 = -1.
Multiplied by -1, this is the imaginary part of the square root of 1 - i. And also the real part of -sqrt(1 + i) - i + sqrt(1 + i)^3, which is a unit in Q(sqrt(1 + i)).
FORMULA
Equals sqrt(1/sqrt(2) - 1/2) = 2^(1/4) * sin(Pi/8).
Equals sqrt((sqrt(2) - 1)/2) = A010767 * A182168. - Bernard Schott, Sep 16 2019
Equals Re(sqrt(-1 - i)). - Peter Luschny, Sep 20 2019
Equals Product_{k>=0} ((8*k - 1)*(8*k + 4))/((8*k - 2)*(8*k + 5)). - Antonio Graciá Llorente, Feb 24 2024
EXAMPLE
Im(sqrt(1 + i)) = 0.45508986056222734130435775782247...
MAPLE
Digits := 120: Re(sqrt(-1 - I))*10^95:
ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Sep 20 2019
MATHEMATICA
RealDigits[Sqrt[1/Sqrt[2] - 1/2], 10, 100][[1]]
PROG
(PARI) imag(sqrt(1+I)) \\ Michel Marcus, Sep 16 2019
CROSSREFS
Cf. A000108, A010767, A182168, A309948 (real part).
Sequence in context: A247860 A196756 A103561 * A198571 A119822 A120651
KEYWORD
nonn,cons,easy
AUTHOR
Alonso del Arte, Aug 24 2019
STATUS
approved