OFFSET
0,1
COMMENTS
i is the imaginary unit such that i^2 = -1.
Multiplied by -1, this is the imaginary part of the square root of 1 - i. And also the real part of -sqrt(1 + i) - i + sqrt(1 + i)^3, which is a unit in Q(sqrt(1 + i)).
FORMULA
Equals sqrt(1/sqrt(2) - 1/2) = 2^(1/4) * sin(Pi/8).
Equals Re(sqrt(-1 - i)). - Peter Luschny, Sep 20 2019
Equals Product_{k>=0} ((8*k - 1)*(8*k + 4))/((8*k - 2)*(8*k + 5)). - Antonio Graciá Llorente, Feb 24 2024
EXAMPLE
Im(sqrt(1 + i)) = 0.45508986056222734130435775782247...
MAPLE
Digits := 120: Re(sqrt(-1 - I))*10^95:
ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Sep 20 2019
MATHEMATICA
RealDigits[Sqrt[1/Sqrt[2] - 1/2], 10, 100][[1]]
PROG
(PARI) imag(sqrt(1+I)) \\ Michel Marcus, Sep 16 2019
CROSSREFS
KEYWORD
AUTHOR
Alonso del Arte, Aug 24 2019
STATUS
approved