[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309677
G.f. A(x) satisfies: A(x) = A(x^3) / (1 - x)^2.
5
1, 2, 3, 6, 9, 12, 18, 24, 30, 42, 54, 66, 87, 108, 129, 162, 195, 228, 279, 330, 381, 456, 531, 606, 711, 816, 921, 1068, 1215, 1362, 1563, 1764, 1965, 2232, 2499, 2766, 3120, 3474, 3828, 4290, 4752, 5214, 5805, 6396, 6987, 7740, 8493, 9246, 10194, 11142
OFFSET
0,2
COMMENTS
Self-convolution of A062051.
LINKS
FORMULA
G.f.: Product_{k>=0} 1/(1 - x^(3^k))^2.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
b(n, i-1)+(p-> `if`(p>n, 0, b(n-p, i)))(3^i)))
end:
a:= n-> add(b(j, ilog[3](j))*b(n-j, ilog[3](n-j)), j=0..n):
seq(a(n), n=0..52); # Alois P. Heinz, Aug 12 2019
MATHEMATICA
nmax = 52; A[_] = 1; Do[A[x_] = A[x^3]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 52; CoefficientList[Series[Product[1/(1 - x^(3^k))^2, {k, 0, Floor[Log[3, nmax]] + 1}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 12 2019
STATUS
approved