[go: up one dir, main page]

login
A309239
Numbers m > 1 having the property that for any prime divisor p of m, k=p-1 is the smallest positive integer such that p-k|m-k.
4
2, 4, 6, 8, 10, 12, 14, 16, 18, 22, 24, 26, 30, 32, 34, 36, 38, 40, 46, 48, 54, 56, 58, 60, 62, 64, 72, 74, 82, 84, 86, 90, 94, 96, 98, 100, 106, 108, 118, 120, 122, 126, 128, 132, 134, 142, 144, 146, 150, 158, 160, 162, 166, 168, 178, 180, 192, 194, 198, 202, 206, 210
OFFSET
1,1
COMMENTS
All terms in this sequence are even. Proof: If m is odd and p a prime factor, then p is odd. Put t=p-2, then m-t is even, and since p-(p-2)=2, p-t|m-t. Therefore k <= p-2 < p-1, and p-1 is not the smallest number satisfying the definition of k. Therefore there are no odd numbers in this sequence.
LINKS
FORMULA
A001414(m) - A001222(m) = A059975(m) = A309155(m), for m in this sequence.
EXAMPLE
For m=1 the predicate would not be well defined.
For m=2, k=1=2-1, so 2 is a term.
For m=10=2*5: p=2->k=1=2-1; p=5->k=4=5-1 therefore 10 is a term.
MAPLE
filter:= proc(n) local p, k;
for p in numtheory:-factorset(n) minus {2} do
for k from 2 to p-3 by 2 do
if (n-k) mod (p-k) = 0 then return false fi
od od;
true
end proc:
select(filter, [seq(i, i=2..200, 2)]); # Robert Israel, Jul 17 2019
MATHEMATICA
fQ[n_, p_] := Module[{k = 1}, While[!Divisible[n - k, p - k], k++]; k == p - 1]; aQ[n_] := And @@ (fQ[n, #] & /@ FactorInteger[n][[;; , 1]]); Select[Range[2, 200], aQ] (* Amiram Eldar, Jul 17 2019 *)
PROG
(PARI) findleast(m, p) = {for (k=1, p-1, if (!((m-k) % (p-k)), return(k)); ); }
isok(m) = {if (m == 1, return(0)); my (f = factor(m)); for (i=1, #f~, my(k = findleast(m, f[i, 1])); if (k != f[i, 1] - 1, return (0)); ); return (1); } \\ Michel Marcus, Aug 18 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved