[go: up one dir, main page]

login
A309229
Square array read by upwards antidiagonals: T(n,k) = Sum_{i=1..n} A191898(i,k).
6
1, 2, 1, 3, 0, 1, 4, 1, 2, 1, 5, 0, 0, 0, 1, 6, 1, 1, 1, 2, 1, 7, 0, 2, 0, 3, 0, 1, 8, 1, 0, 1, 4, -2, 2, 1, 9, 0, 1, 0, 0, -3, 3, 0, 1, 10, 1, 2, 1, 1, -2, 4, 1, 2, 1, 11, 0, 0, 0, 2, 0, 5, 0, 0, 0, 1, 12, 1, 1, 1, 3, 1, 6, 1, 1, 1, 2, 1, 13, 0, 2, 0, 4, 0, 0, 0, 2, 0, 3, 0, 1, 14, 1, 0, 1, 0, -2, 1, 1, 0, -4, 4, -2, 2, 1
OFFSET
1,2
COMMENTS
log(A003418(n)) = Sum_{k>=1} (T(n, k)/k - 1/k).
Partial sums of the symmetric matrix A191898. - Mats Granvik, Apr 12 2020
1 + Sum_{k=1..2*n} sign((sign(n+Sum_{j=2..k}-|T(n,j)|)+1)) appears to be asymptotic to sqrt(8*n). - Mats Granvik, Jun 08 2020
From Mats Granvik, Apr 14 2021: (Start)
Conjecture 1: For n>1: max(T(1..n,n)) + min(T(1..n,n)) = 2*mean(T(1..n,n)) = -A023900(n).
Patterns that eventually fail or possibly become switched are:
max(T(n,1..n!)) = 1,2,3,4,5,6,7,8,...
min(T(n,1..n!)) = 1,0,-2,-3,-7,-5,-11,-12,...
which are the first 8 terms of A275205.
Conjecture 2: The Prime Number Theorem should imply: mean(T(n,1..n!)) = 1.
(End)
FORMULA
Recurrence:
T(n, 1) = [n >= 1]*n;
T(1, k) = 1;
T(n, k) = [n > k]*T(n - k, k) + [n <= k](Sum_{i=0..n-1} T(n - 1, k - i) - Sum_{i=1..n-1} T(n, k - i)). - Mats Granvik, Jun 19 2020
T(n,k) = Sum_{i=1..n} A191898(i,k).
EXAMPLE
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, ...
3, 1, 0, 1, 3, -2, 3, 1, 0, 1, 3, -2, 3, 1, ...
4, 0, 1, 0, 4, -3, 4, 0, 1, 0, 4, -3, 4, 0, ...
5, 1, 2, 1, 0, -2, 5, 1, 2, -4, 5, -2, 5, 1, ...
6, 0, 0, 0, 1, 0, 6, 0, 0, -5, 6, 0, 6, 0, ...
7, 1, 1, 1, 2, 1, 0, 1, 1, -4, 7, 1, 7, -6, ...
8, 0, 2, 0, 3, 0, 1, 0, 2, -5, 8, 0, 8, -7, ...
9, 1, 0, 1, 4, -2, 2, 1, 0, -4, 9, -2, 9, -6, ...
10, 0, 1, 0, 0, -3, 3, 0, 1, 0, 10, -3, 10, -7, ...
11, 1, 2, 1, 1, -2, 4, 1, 2, 1, 0, -2, 11, -6, ...
12, 0, 0, 0, 2, 0, 5, 0, 0, 0, 1, 0, 12, -7, ...
13, 1, 1, 1, 3, 1, 6, 1, 1, 1, 2, 1, 0, -6, ...
14, 0, 2, 0, 4, 0, 0, 0, 2, 0, 3, 0, 1, 0, ...
...
MATHEMATICA
f[n_] := DivisorSum[n, MoebiusMu[#] # &]; nn = 14; A = Accumulate[Table[Table[f[GCD[n, k]], {k, 1, nn}], {n, 1, nn}]]; Flatten[Table[Table[A[[n - k + 1, k]], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Jun 09 2020 *)
CROSSREFS
Sequence in context: A127094 A221642 A158906 * A143239 A158951 A126988
KEYWORD
tabl,sign
AUTHOR
Mats Granvik, Aug 10 2019
STATUS
approved