[go: up one dir, main page]

login
A309200
a(n) is the smallest divisor of the Catalan number C(n) = A000108(n) not already in the sequence.
6
1, 2, 5, 7, 3, 4, 11, 10, 13, 17, 14, 19, 20, 6, 9, 15, 22, 12, 21, 23, 26, 8, 18, 29, 28, 31, 34, 35, 37, 16, 41, 38, 30, 39, 43, 46, 47, 25, 49, 44, 27, 24, 36, 40, 42, 45, 51, 50, 52, 33, 53, 54, 55, 48, 57, 58, 59, 60, 61, 56, 63, 32, 65, 66, 67, 68, 69
OFFSET
1,2
COMMENTS
Conjecture: This is a permutation of the positive integers. [The conjecture is true, see A309364. - Rémy Sigrist, Jul 25 2019]
Given any monotonically increasing sequence {b(n): n >= 1} of positive integers we can define a sequence {a(n): n >= 1} by setting a(n) to be smallest divisor of b(n) not already in the {a(n)} sequence. The triangular numbers A000217 produce A111273. A000027 is fixed under this transformation.
LINKS
MAPLE
with(numtheory);
# the general transformation
f := proc(b) local t1, d, j, dlis, L, hit, i, n, a, n1;
if whattype(b) <> list then RETURN([]); fi;
n1:=nops(b); a:=[]; L:=10000;
hit:=Array(0..L, 0);
for n from 1 to n1 do
t1:=b[n];
dlis:=sort(convert(divisors(t1), list));
for j from 1 to nops(dlis) do d:=dlis[j];
if d > L then error("d too large", n, t1, d); fi;
if hit[d]=0 then break; fi; od:
a:=[op(a), d];
hit[d]:=1; od;
[seq(a[i], i=1..nops(a))];
end;
# the Catalan numbers
C:=[seq(binomial(2*n, n)/(n+1), n=1..40)];
f(C);
PROG
(PARI) \\ See Links section.
(Sage)
def transform(sup, fun):
A = []
for n in (1..sup):
D = divisors(fun(n))
A.append(next(d for d in D if d not in A))
return A
A309200list = lambda lim: transform(lim, catalan_number)
print(A309200list(29)) # Peter Luschny, Jul 26 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 25 2019
EXTENSIONS
More terms from Rémy Sigrist, Jul 25 2019
STATUS
approved