[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308948
a(n) = A006190(A322907(n)+1) mod n.
2
0, 1, 1, 1, 3, 1, 6, 5, 1, 3, 10, 1, 8, 13, 4, 9, 16, 1, 18, 9, 13, 21, 1, 13, 18, 5, 1, 13, 12, 19, 30, 17, 10, 33, 6, 1, 31, 37, 25, 29, 32, 13, 1, 21, 19, 1, 46, 25, 48, 43, 16, 25, 1, 1, 21, 41, 37, 17, 58, 49, 1, 61, 55, 33, 18, 43, 66, 33, 1, 41, 70, 37
OFFSET
1,5
COMMENTS
A322907(n) is the smallest k > 0 such that n divides A006190(k).
Let M = [{3, 1}, {1, 0}], I = [{1, 0}, {0, 1}] is the 2 X 2 identity matrix, then A322907(n) is the smallest k > 0 such that M^k == r*I (mod n) for some r such that 0 <= r < n, and a(n) gives the value r.
A322906(n) is the multiplicative order of a(n) modulo n, which can only take value 1, 2 or 4.
LINKS
FORMULA
Also a(n) = A006190(A322907(n)-1) mod n.
a(2^e) = 1 if e = 1, 2, 2^(e-1) + 1 if e >= 3; a(p^e) = a(p)^(p^(e-1)) mod p^e for odd primes p.
For odd primes p, a(p^e) = 1 if and only if A322907(p) == 2 (mod 4); a(p^e) = p^e - 1 if and only if 4 divides A322907(p).
EXAMPLE
For n = 7, {A006190(n) mod 7 : n > 0} = {1, 3, 3, 5, 4, 3, 6, 0, 6, ...}, so a(7) = 6. Also, A322907(7) = 8, and M^8 mod 7 = [{6, 0}, {0, 6}], so a(7) = 6.
MATHEMATICA
a[n_] := For[k = 1, True, k++, If[Divisible[Fibonacci[k, 3], n], Return[ Mod[Fibonacci[k + 1, 3], n]]]];
Array[a, 100] (* Jean-François Alcover, Jul 05 2019 *)
PROG
(PARI) a(n) = my(M=[3, 1; 1, 0]); for(k=1, 12*n/7, if((Mod(M, n)^k)[2, 1]==0, return(lift((Mod(M, n)^k)[1, 1]))))
CROSSREFS
Similar sequences: A217036, A308947.
Sequence in context: A120394 A371667 A016575 * A225246 A116666 A208331
KEYWORD
nonn
AUTHOR
Jianing Song, Jul 02 2019
STATUS
approved