[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308536
Expansion of e.g.f. exp(1 - exp(2*x)).
3
1, -2, 0, 8, 16, -64, -576, -1152, 12800, 136704, 422912, -4464640, -72626176, -413966336, 1805123584, 64448004096, 651340611584, 1132294045696, -73000566390784, -1332193006190592, -10293724166750208, 56984418960539648, 3042980275005947904, 46913652420264329216
OFFSET
0,2
FORMULA
O.g.f.: 1/(1 + 2*x/(1 - 2*x/(1 + 2*x/(1 - 4*x/(1 + 2*x/(1 - 6*x/(1 + 2*x/(1 - 8*x/(1 + ...))))))))), a continued fraction.
a(0) = 1; a(n) = -Sum_{k=1..n} 2^k*binomial(n-1,k-1)*a(n-k).
a(n) = exp(1) * 2^n * Sum_{k>=0} (-1)^k*k^n/k!.
a(n) = 2^n * A000587(n).
MATHEMATICA
nmax = 23; CoefficientList[Series[Exp[1 - Exp[2x]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = -Sum[2^k Binomial[n - 1, k - 1] a[n - k], {k, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
Table[2^n BellB[n, -1], {n, 0, 23}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 06 2019
STATUS
approved