[go: up one dir, main page]

login
A308265
Sum of the largest parts in the partitions of n into 3 parts.
2
0, 0, 1, 2, 5, 9, 15, 22, 34, 45, 62, 81, 104, 129, 163, 195, 237, 282, 333, 387, 454, 518, 596, 678, 768, 862, 973, 1080, 1205, 1335, 1475, 1620, 1786, 1947, 2130, 2319, 2520, 2727, 2959, 3185, 3437, 3696, 3969, 4249, 4558, 4860, 5192, 5532, 5888, 6252
OFFSET
1,4
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (n-i-k).
Conjectures from Colin Barker, Jul 16 2019: (Start)
G.f.: x^3*(1 + 2*x + 3*x^2 + 3*x^3 + 2*x^4) / ((1 - x)^4*(1 + x)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) - 4*a(n-5) - a(n-6) + 2*a(n-7) + 2*a(n-8) - a(n-10) for n>10.
(End)
EXAMPLE
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 1 2 5 9 15 22 34 45 ...
-----------------------------------------------------------------------
MATHEMATICA
Table[Sum[Sum[n - i - k, {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
CROSSREFS
Cf. A307872.
Sequence in context: A320259 A007982 A011904 * A218914 A047809 A014126
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 17 2019
STATUS
approved