[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308151
Triangular array: each row partitions the partitions of n into n parts; of which the k-th part is the number of partitions having stay number k-1; see Comments.
0
1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 2, 3, 1, 0, 0, 1, 3, 3, 2, 2, 0, 0, 1, 4, 6, 2, 1, 1, 0, 0, 1, 5, 8, 4, 1, 2, 1, 0, 0, 1, 8, 10, 4, 4, 1, 1, 1, 0, 0, 1, 10, 14, 8, 3, 2, 2, 1, 1, 0, 0, 1, 13, 20, 9, 5, 3, 2, 1, 1, 1, 0, 0, 1, 18, 25, 12, 8, 5, 2
OFFSET
1,12
COMMENTS
The stay number of a partition P is defined as follows. Let U be the ordering of the parts of P in nonincreasing order, and let V be the reverse of U. The stay number of P is the number of numbers whose position in V is the same as in U. (1st column) = A238479. When the rows of the array are read in reverse order, it appears that the limiting sequence is A008483.
EXAMPLE
The first 8 rows:
1
0 1
0 1 1
1 1 0 1
1 2 1 0 1
2 3 1 0 0 1
3 3 2 2 0 0 1
4 6 2 1 1 0 0 1
5 8 4 1 2 1 0 0 1
For n = 5, P consists of these partitions:
[5], with reversal [5], thus, 1 stay number
[4,1], with reversal [1,4], thus 0 stay numbers
[3,2], with reversal [2,3], thus 0 stay numbers
[2,2,1], with reversal [1,2,2], thus 1 stay number
[2,1,1,1], with reversal [1,1,1,2], thus 2 stay numbers
[1,1,1,1,1], thus, 5 stay numbers.
As a result, row 5 of the array is 2 3 1 0 0 1
MATHEMATICA
Map[BinCounts[#, {0, Last[#] + 1, 1}] &, Map[Map[Count[#, 0] &, # - Map[Reverse, #] &[IntegerPartitions[#]]] &, Range[0, 35]]]
(* Peter J. C. Moses, May 14 2019 *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, May 16 2019
STATUS
approved