[go: up one dir, main page]

login
A308140
Sum of the largest side lengths of all integer-sided triangles with squarefree side lengths and perimeter n.
1
0, 0, 1, 0, 2, 2, 6, 3, 3, 0, 10, 5, 17, 12, 32, 20, 20, 13, 14, 7, 27, 30, 64, 43, 32, 21, 71, 48, 92, 92, 154, 112, 110, 85, 169, 123, 142, 94, 222, 154, 171, 101, 245, 169, 316, 250, 424, 321, 361, 263, 322, 219, 367, 337, 348, 260, 275, 242, 405, 310
OFFSET
1,5
LINKS
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * mu(i)^2 * mu(k)^2 * mu(n-i-k)^2 * (n-i-k), where mu is the Möbius function (A008683).
MAPLE
N:= 100: # for a(1)..a(N)
SF:= select(numtheory:-issqrfree, [$1..N/2]):
V:= Vector(N):
for ia from 1 to nops(SF) do
a:= SF[ia];
if 2*a >= N then break fi;
for ib from ia by -1 to 1 do
b:= SF[ib];
if 2*b <= a then break fi;
cs:= select(c -> b+c > a, SF[1...ib]);
P:= select(`<=`, map(c -> a+b+c, cs), N);
V[P]:= V[P] +~ a;
od od:
convert(V, list); # Robert Israel, May 14 2019
MATHEMATICA
Table[Sum[Sum[(n - i - k)* MoebiusMu[i]^2*MoebiusMu[k]^2*MoebiusMu[n - k - i]^2 *Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
PROG
(PARI) a(n) = sum(k=1, n\3, sum(i=k, (n-k)\2, sign((i+k)\(n-i-k+1))* issquarefree(i)*issquarefree(k)*issquarefree(n-i-k)*(n-i-k))); \\ Michel Marcus, May 14 2019
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Wesley Ivan Hurt, May 14 2019
STATUS
approved